On a notion of averaged mappings in $\operatorname{CAT}(0)$ spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 37-50

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a notion of averaged mappings in the broader class of $\operatorname{CAT}(0)$ spaces. We call these mappings $\alpha$-firmly nonexpansive and develop basic calculus rules for ones that are quasi-$\alpha$-firmly nonexpansive and have a common fixed point. We show that the iterates $x_n:=Tx_{n-1}$ of a nonexpansive mapping $T$ converge weakly to an element in $\operatorname{Fix} T$ whenever $T$ is quasi-$\alpha$-firmly nonexpansive. Moreover, $P_{\operatorname{Fix} T}x_n$ converge strongly to this weak limit. Our theory is illustrated with two classical examples of cyclic and averaged projections.
Keywords: averaged mapping, firmly nonexpansive mapping, $\operatorname{CAT}(0)$ space.
@article{FAA_2022_56_1_a2,
     author = {A. B\"erd\"ellima},
     title = {On a notion of averaged mappings in $\operatorname{CAT}(0)$ spaces},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {37--50},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a2/}
}
TY  - JOUR
AU  - A. Bërdëllima
TI  - On a notion of averaged mappings in $\operatorname{CAT}(0)$ spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 37
EP  - 50
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a2/
LA  - ru
ID  - FAA_2022_56_1_a2
ER  - 
%0 Journal Article
%A A. Bërdëllima
%T On a notion of averaged mappings in $\operatorname{CAT}(0)$ spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 37-50
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a2/
%G ru
%F FAA_2022_56_1_a2
A. Bërdëllima. On a notion of averaged mappings in $\operatorname{CAT}(0)$ spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 37-50. http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a2/