Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2022_56_1_a2, author = {A. B\"erd\"ellima}, title = {On a notion of averaged mappings in $\operatorname{CAT}(0)$ spaces}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {37--50}, publisher = {mathdoc}, volume = {56}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a2/} }
A. Bërdëllima. On a notion of averaged mappings in $\operatorname{CAT}(0)$ spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 37-50. http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a2/
[1] A. D. Aleksandrov, “Odna teorema o treugolnikakh v metricheskom prostranstve i nekotorye ee prilozheniya”, Sbornik statei. Posvyaschaetsya akademiku Ivanu Matveevichu Vinogradovu k ego 60-letiyu, Trudy MIAN SSSR, 38, Izd-vo AN SSSR, M., 1951, 5–23
[2] D. Ariza-Ruiz, G. López-Acedo, A. Nicolae, “The asymptotic behavior of the composition of firmly nonexpansive mappings”, J. Optim. Theory Appl., 167:2 (2015), 409–429 | DOI | MR | Zbl
[3] W. Ballmann, Lectures on Spaces of Nonpositive Curvature, Birkhäuser-Verlag, Basel, 1995 | MR | Zbl
[4] H. H. Bauschke, J. M. Borwein, “On projection algorithms for solving convex feasibility problems”, SIAM Review, 38:3 (1996), 367–426 | DOI | MR | Zbl
[5] H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, Berlin, 2011 ; 2nd ed., 2017 | MR | Zbl
[6] H. H. Bauschke, Projection algorithms and monotone operators, PhD, Simon Fraser University, Buranby, 1996 | MR
[7] A. Bërdëllima, Investigations in Hadamard Spaces, Georg-August-Universität Göttingen, Göttingen, 2020
[8] I. D. Berg, I. G. Nikolaev, “Quasilinearization and curvature of Aleksandrov spaces”, Geom. Dedicata, 133 (2008), 195–218 | DOI | MR | Zbl
[9] M. Baćak, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 22, De Gruyter, Berlin, 2014 | MR | Zbl
[10] P. L. Combettes, I. Yamada, “Compositions and convex combinations of averaged nonexpansive operators”, J. Math. Anal. Appl., 425:1 (2015), 55–70 | DOI | MR | Zbl
[11] M. Gromov, “Hyperbolic groups”, Essays in Group Theory, Math. Sci. Res. Inst. Publ., 8, Springer-Verlag, New York, 1987, 75–263 | MR
[12] M. Gromov, Metric Structures for Riemannian and non-Riemannian Spaces, Progress in Mathematics, 152, Birkhäuser, Boston, 1999 | MR | Zbl
[13] R. E. Bruck Jr., “Nonexpansive projections on subsets of Banach spaces”, Pacific J. Math., 47 (1973), 341–355 | DOI | MR | Zbl
[14] M. A. Krasnoselskii, “Dva zamechaniya o metode posledovatelnykh priblizhenii”, UMN, 10:1(63) (1955), 123–127 | MR | Zbl
[15] T.-C. Lim, “Remarks on some fixed point theorems”, Proc. Amer. Math. Soc., 60 (1976), 179–182 | DOI | MR
[16] D. R. Luke, N. H. Thao, M. K. Tam, “Quantitative convergence analysis of iterated expansive, set-valued mappings”, Math. Oper. Res., 43:4 (2018), 1143–1176 | DOI | MR | Zbl
[17] A. Lytchak, A. Petrunin, Cyclic projections in Hadamard spaces, arXiv: 2104.09026
[18] M. R. Bridson, A. Haefliger, Metric Spaces of Nonpositive Curvature, A Series of Comprehensive Studies in Mathematics, 319, Birkhäuser Boston Inc., Boston, 1999 | MR
[19] W. R. Mann, “Mean value methods in iteration”, Proc. Amer. Math. Soc., 4 (1953), 506–510 | DOI | MR | Zbl