On Milnor and Tyurina numbers of zero-dimensional singularities
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 3-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study relationships between some topological and analytic invariants of zero-dimensional germs, or multiple points. Among other things, it is shown that there exist no rigid zero-dimensional Gorenstein singularities and rigid almost complete intersections. In the proof of the first result we exploit the canonical duality between homology and cohomology of the cotangent complex, while in the proof of the second we use a new method which is based on the properties of the torsion functor. In addition, we obtain highly efficient estimates for the dimension of the spaces of the first lower and upper cotangent functors of arbitrary zero-dimensional singularities, including the space of derivations. We also consider examples of nonsmoothable zero-dimensional noncomplete intersections and discuss some properties and methods for constructing such singularities using the theory of modular deformations, as well as a number of other applications.
Keywords: Artinian algebras, multiple points, almost complete intersections, deviation, rigid singularities, duality, torsion functor, modular deformations.
Mots-clés : socle
@article{FAA_2022_56_1_a0,
     author = {A. G. Aleksandrov},
     title = {On {Milnor} and {Tyurina} numbers of zero-dimensional singularities},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--25},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a0/}
}
TY  - JOUR
AU  - A. G. Aleksandrov
TI  - On Milnor and Tyurina numbers of zero-dimensional singularities
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 3
EP  - 25
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a0/
LA  - ru
ID  - FAA_2022_56_1_a0
ER  - 
%0 Journal Article
%A A. G. Aleksandrov
%T On Milnor and Tyurina numbers of zero-dimensional singularities
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 3-25
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a0/
%G ru
%F FAA_2022_56_1_a0
A. G. Aleksandrov. On Milnor and Tyurina numbers of zero-dimensional singularities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 3-25. http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a0/

[1] A. G. Aleksandrov, “Deformatsii buketov kvaziodnorodnykh odnomernykh osobennostei”, Funkts. analiz i ego pril., 15:1 (1981), 67–68 | MR

[2] A. G. Aleksandrov, “Kogomologiya kvaziodnorodnogo polnogo peresecheniya”, Izv. AN SSSR, ser. matem., 49:3 (1985), 467–510 | MR

[3] A. G. Aleksandrov, “Duality, derivations and deformations of zero-dimensional singularities”, Zero-dimensional schemes, Proceedings of the International conference held in Ravello (Italy, June 8–13, 1992), de Gruyter, Berlin–New York, 1994, 11–31, reprint 2016 | MR | Zbl

[4] A. G. Aleksandrov, “Differentsialnye formy na nulmernykh osobennostyakh”, Funkts. analiz i ego pril., 52:4 (2018), 3–22 | DOI | MR | Zbl

[5] A. G. Aleksandrov, “Analytic invariants of multiple points”, Methods Appl. Anal., 25:3 (2018), 167–204 | DOI | MR | Zbl

[6] A. Kartan, S. Eilenberg, Gomologicheskaya algebra, IL, M., 1960

[7] D. A. Cartwright, D. Erman, M. Velasco, B. Viray, “Hilbert schemes of $8$ points”, Algebra Number Theory, 3:7 (2009), 763–795 | DOI | MR | Zbl

[8] H. Grauert, H. Kerner, “Deformationen von Singularitäten komplexer Räume”, Math. Ann., 153 (1964), 236–260 | DOI | MR | Zbl

[9] G.-M. Greuel, “Der Gauß-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten”, Math. Ann., 214:3 (1975), 235–266 | DOI | MR | Zbl

[10] J. Herzog (ed.), E. Kunz (ed.), Der kanonische Module eines Cohen–Macaulay Rings, Lecture Notes in Math., 238, Springer–Verlag, Berlin–Heidelberg–New York, 1971, 106 pp. | DOI | MR

[11] J. Herzog, “Eindimensionale fast-vollständige Durchschnitte sind nicht starr”, Manuscripta Math., 30:1 (1979), 1–19 | DOI | MR | Zbl

[12] A. A. Iarrobino, “The number of generic singularities”, Rice Univ. Stud., 59:1 (1973), 49–51 | MR | Zbl

[13] A. A. Iarrobino, “Punctual Hilbert schemes”, Mem. Amer. Math. Soc., 10:188 (1977), 1–124 | MR

[14] A. Iarrobino, J. Emsalem, “Some zero-dimensional generic singularities; finite algebras having small tangent space”, Compositio Math., 36:2 (1978), 145–188 | MR | Zbl

[15] A. A. Iarrobino, “Deforming complete intersection Artin algebras. Appendix: Hilbert function of $\mathbb C[x,y]/I$”, Singularities, Part 1 (Summer Inst. Arcata-1981), Proc. Symp. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983, 593–608 | DOI | MR

[16] E. Kunz, “Almost complete intersections are not Gorenstein rings”, J. Algebra, 28:11 (1974), 1–15 | MR

[17] A. G. Kushnirenko, “Mnogogrannik Nyutona i chislo reshenii sistemy $k$ uravnenii s $k$ neizvestnymi”, Uspekhi matem. nauk, 30:2 (1975), 266–267

[18] S. Lichtenbaum, M. Schlessinger, “The cotangent complex of a morphism”, Trans. Amer. Math. Soc., 128:1 (1967), 41–70 | DOI | MR | Zbl

[19] V. P. Palamodov, “O kratnosti golomorfnogo otobrazheniya”, Funkts. analiz i ego pril., 1:3 (1967), 54–65 | MR | Zbl

[20] V. P. Palamodov, “Moduli in versal deformations of complex spaces”, Variétiés Analytique Compactes (Colloq., Nice 1977), Lect. Notes in Math., 683, Springer-Verlag, Berlin, 1978, 74–115 | DOI | MR

[21] H. C. Pinkham, Deformations of algebraic varieties with $\mathbb G_m$action, Astérisque, 20, Société Mathématique de France, Paris, 1974 | MR

[22] D. S. Rim, “Torsion differentials and deformation”, Trans. Amer. Math. Soc., 169 (442):1 (1972), 257–278 | DOI | MR | Zbl

[23] M. Schaps, “Déformations non singulièr de courbes gauches”, Astérisque, 7/8, Société Mathématique de France, Paris, 1973, 121–128 | MR

[24] M. Schlessinger, “Rigidity of quotient singularities”, Invent. Math., 14:1 (1971), 17–26 | DOI | MR | Zbl

[25] M. Schlessinger, “On rigid singularities”, Rice Univ. Stud., 59:1 (1973), 147–162 | MR | Zbl

[26] P. Seibt, “Infnitesimal extensions of commutative algebras”, J. Pure Appl. Algebra, 16:2 (1980), 197–206 | DOI | MR | Zbl

[27] G. N. Tyurina, “Lokalno poluuniversalnye ploskie deformatsii izolirovannykh osobennostei kompleksnykh prostranstv”, Izv. AN SSSR, seriya matem., 33:5 (1969), 1026-1058 | Zbl

[28] R. Waldi, “Deformation von Gorenstein-Singularitäten der Kodimension 3”, Math. Ann., 242:1 (1979), 201–208 | DOI | MR | Zbl