Note on Derivations of Certain non-CSL Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 95-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subspace lattice $\{(0), M, N, H\}$ of a Hilbert space $H$ is called a generalized generic lattice if $M\cap N =M^\perp\cap N^\perp =(0)$ and $\dim (M^\perp \cap N)=\dim (M\cap N^\perp)$. In this note, we show that each derivation of a generalized generic lattice algebra into itself is inner.
Keywords: generalized generic lattice, derivation, innerness.
@article{FAA_2021_55_4_a7,
     author = {Chaoqun Chen and Fangyan Lu},
     title = {Note on {Derivations} of {Certain} {non-CSL} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {95--99},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a7/}
}
TY  - JOUR
AU  - Chaoqun Chen
AU  - Fangyan Lu
TI  - Note on Derivations of Certain non-CSL Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 95
EP  - 99
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a7/
LA  - ru
ID  - FAA_2021_55_4_a7
ER  - 
%0 Journal Article
%A Chaoqun Chen
%A Fangyan Lu
%T Note on Derivations of Certain non-CSL Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 95-99
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a7/
%G ru
%F FAA_2021_55_4_a7
Chaoqun Chen; Fangyan Lu. Note on Derivations of Certain non-CSL Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 95-99. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a7/

[1] M. Anoussis, A. Katavolos, M. Lambrou, J. Operator Theory, 30:2 (1993), 267–299 | MR | Zbl

[2] L. Chen, F. Lu, Linear Algebra Appl., 475 (2015), 62–72 | DOI | MR | Zbl

[3] P. Halmos, Trans. Amer. Math. Soc., 114 (1969), 381–389 | DOI

[4] W. Jing, S. Lu, P. Li, Bull. Austral. Math. Soc., 66:2 (2002), 227–232 | DOI | MR | Zbl

[5] A. Katavolos, M. Lambrou, W. Longstaff, Studia Math., 105:1 (1993), 25–36 | DOI | MR | Zbl

[6] M. Lambrou, Automatic continuity and implementation of homomorphisms, rukopis

[7] M. Lambrou, W. Longstaff, J. Operator Theory, 25:2 (1991), 383–397 | MR | Zbl

[8] M. Lambrou, W. Longstaff, Proc. Amer. Math. Soc., 122:4 (1994), 1065–1073 | DOI | MR | Zbl

[9] J. Li, Z. Pan, J. Math. Anal. Appl., 374:1 (2011), 311–322 | DOI | MR | Zbl

[10] P. Li, J. Ma, Bull. Austral. Math. Soc., 66:3 (2002), 477–486 | DOI | MR | Zbl

[11] W. Longstaff, J. London Math. Soc., 11 (1975), 491–498 | DOI | MR | Zbl

[12] F. Lu, Linear Algebra Appl., 430:8–9 (2009), 2233–2239 | MR | Zbl

[13] Z. Pan, Oper. Matrices, 8:4 (2014), 1191–1199 | DOI | MR | Zbl

[14] M. Papadakis, Studia Math., 98:1 (1991), 11–17 | DOI | MR | Zbl

[15] M. Papadakis, Proc. Amer. Math. Soc., 119:4 (1993), 1157–1164 | DOI | MR | Zbl