Resonances for the Dirac Operator on the Half-Line
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 91-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the inverse problem for a massless Dirac operator on the half-line such that the support of its potential has fixed upper boundary and solve it in terms of a Jost function and a scattering matrix. We prove that the potential of such an operator is uniquely determined by its resonances.
Keywords: Dirac operator, inverse problem, resonance.
@article{FAA_2021_55_4_a6,
     author = {E. L. Korotyaev and D. S. Mokeev},
     title = {Resonances for the {Dirac} {Operator} on the {Half-Line}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {91--94},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a6/}
}
TY  - JOUR
AU  - E. L. Korotyaev
AU  - D. S. Mokeev
TI  - Resonances for the Dirac Operator on the Half-Line
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 91
EP  - 94
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a6/
LA  - ru
ID  - FAA_2021_55_4_a6
ER  - 
%0 Journal Article
%A E. L. Korotyaev
%A D. S. Mokeev
%T Resonances for the Dirac Operator on the Half-Line
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 91-94
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a6/
%G ru
%F FAA_2021_55_4_a6
E. L. Korotyaev; D. S. Mokeev. Resonances for the Dirac Operator on the Half-Line. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 91-94. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a6/

[1] S. Dyatlov, M. Zworski, Mathematical Theory of Scattering Resonances, Graduate Studies in Math., no. 200, Amer. Math. Soc., Providence, RI, 2019 | DOI | MR | Zbl

[2] R. O. Hryniv, S. S. Manko, Integral Equations Operator Theory, 84:3 (2016), 323–355 | DOI | MR | Zbl

[3] A. Iantchenko, E. Korotyaev, J. Math. Anal. Appl., 420:1 (2014), 279–313 | DOI | MR | Zbl

[4] P. Koosis, The logarithmic integral. I., Corrected reprint of the 1988 original, Cambridge Studies in Advanced Mathematics, no. 12, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[5] E. Korotyaev, Asymptot. Anal., 37:3–4 (2004), 215–226 | MR | Zbl

[6] E. Korotyaev, D. Mokeev, arXiv: 2009.07031

[7] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac operators, Mathematics and its Applications (Soviet Series), no. 59, Kluwer Academic Publishers Group, Dordrecht, 1991 | MR

[8] B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1992 | MR