Localization for Hyperbolic Measures on Infinite-Dimensional Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 40-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of the extreme points of families of concave measures on infinite-dimensional locally convex spaces are studied. The localization method is generalized to hyperbolic measures on Fréchet spaces.
Keywords: localization, hyperbolic measure, bisection method.
@article{FAA_2021_55_4_a2,
     author = {A. N. Kalinin},
     title = {Localization for {Hyperbolic} {Measures} on {Infinite-Dimensional} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {40--54},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a2/}
}
TY  - JOUR
AU  - A. N. Kalinin
TI  - Localization for Hyperbolic Measures on Infinite-Dimensional Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 40
EP  - 54
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a2/
LA  - ru
ID  - FAA_2021_55_4_a2
ER  - 
%0 Journal Article
%A A. N. Kalinin
%T Localization for Hyperbolic Measures on Infinite-Dimensional Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 40-54
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a2/
%G ru
%F FAA_2021_55_4_a2
A. N. Kalinin. Localization for Hyperbolic Measures on Infinite-Dimensional Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 40-54. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a2/

[1] L. M. Arutyunyan, E. D. Kosov, “O mnogochlenakh na prostranstvakh s vypuklymi merami”, Dokl. RAN, 460:5 (2015), 503–506 | DOI | Zbl

[2] S. G. Bobkov, “Remarks on the growth of $L^p$-norms of polynomials”, Geometric Aspects of Functional Analysis, Proc. of the Israel Seminar (GAFA) 1996–2000, Lecture Notes in Math., no. 1745, Springer-Verlag, Berlin, 2000, 27–35 | DOI | MR | Zbl

[3] S. G. Bobkov, “Nekotorye obobscheniya rezultatov Yu. V. Prokhorova o neravenstvakh tipa Khinchina dlya polinomov”, Teoriya veroyatn. i ee primen., 45:4 (2000), 745–748 | DOI | Zbl

[4] S. G. Bobkov, “Lokalizatsionnoe dokazatelstvo izoperemitrecheskogo neravenstva Bakri–Ledu i nekotorye prilozheniya”, Teoriya veroyatn. i ee primeneniya, 47:2 (2002), 340–346 | DOI | Zbl

[5] S. G. Bobkov, “On isoperimetric constants for log-concave probability distributions”, Geometric Aspects of Functional Analysis, Proc. of the Israel Seminar (GFA) 2004–2005, Lecture Notes in Math., no. 1910, Springer-Verlag, Berlin, 2007, 81–88 | DOI | MR | Zbl

[6] S. G. Bobkov, Dzh. Melburn, “Lokalizatsiya dlya beskonechnomernykh giperbolicheskikh mer”, Dokl. RAN, 462:3 (2015), 261–263 | DOI | Zbl

[7] S. G. Bobkov, J. Melbourne, “Hyperbolic measures on infinite dimensional spaces”, Probab. Surv., 13 (2016), 57–88 | DOI | MR | Zbl

[8] S. G. Bobkov, F. L. Nazarov, “Sharp dilation-type inequalities with fixed parameter of convexity”, Zap. nauchn. sem. POMI, 351, 2007, 54–78 | MR

[9] V. I. Bogachev, Measure Theory, v. 1, 2, Springer, Berlin–Heidelberg, 2007 | MR | Zbl

[10] V. I. Bogachev, Weak Convergence of Measures., Amer. Math. Soc., Providence, RI, 2018 | MR | Zbl

[11] V. I. Bogachev, O. G. Smolyanov, Topological Vector Spaces and Their Applications, Springer, Cham, 2017 | MR | Zbl

[12] C. Borell, “Convex measures on locally convex spaces”, Ark. Math., 12 (1974), 239–252 | DOI | MR | Zbl

[13] C. Borell, “Convex set functions in $d$-space”, Period. Math. Hungar, 6:2 (1975), 111–136 | DOI | MR

[14] C. Borell, “Convexity of measures in certain convex cones in vector space $\sigma $-algebras”, Math. Scand., 53:1 (1983), 125–144 | DOI | MR | Zbl

[15] K. Borsuk, “Drei Sätze über die n-dimensionale euklidische Sphäre”, Fund. Math., 20 (1933), 177–190 | DOI

[16] M. Fradelizi, “Concentration inequalities for $s$-concave measures of dilations of Borel sets and applications”, Electron. J. Probab., 14:71 (2009), 2068–2090 | MR | Zbl

[17] M. Fradelizi, O. Guédon, “The extreme points of subsets of $s$-concave probabilities and a geometric localization theorem”, Discrete Comput. Geom., 31:2 (2004), 327–335 | DOI | MR | Zbl

[18] M. Fradelizi, O. Guédon, “A generalized localization theorem and geometric inequalities for convex bodies”, Adv. Math., 204:2 (2006), 509–529 | DOI | MR | Zbl

[19] O. Guédon, “Kahane–Khinchine type inequalities for negative exponent”, Mathematika, 46:1 (1999), 165–173 | DOI | MR | Zbl

[20] R. Kannan, L. Lovász, M. Simonovits, “Isoperimetric problems for convex bodies and a localization lemma”, Discrete Comput. Geom., 13:3-4 (1995), 541–559 | DOI | MR | Zbl

[21] L. Lovász, M. Simonovits, “Random walks in a convex body and an improved volume algorithm”, Random Struct. Algorithms, 4:4 (1993), 359–412 | DOI | MR | Zbl

[22] J. Matoušek, Using the Borsuk–Ulam Theorem Lectures on Topological Methods in Combinatorics and Geometry, Universitext, Springer-Verlag, Berlin, 2003 | MR | Zbl

[23] F. Nazarov, M. Sodin, A. Volberg, “Geometricheskaya lemma Kannana–Lovasa–Shimonovicha, ne zavisyaschie ot razmernosti otsenki raspredeleniya znachenii polinomov i raspredelenie nulei sluchainykh analiticheskikh funktsii”, Algebra i Analiz, 14:2 (2002), 214–234

[24] L. E. Payne, H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Arch. Rational Mech. Anal., 1960, no. 5, 286-292 | DOI | MR | Zbl

[25] Yu. D. Burago, V. A. Zalgaller, Geometricheskie neravenstva, «Nauka» Leningrad. otd., Leningrad, 1980 | MR

[26] H. Hadwiger, D. Ohmann, “Brunn-Minkowskischer Satz und Isoperimetrie”, Math. Z., 66 (1956), 1-8 | DOI | MR | Zbl

[27] M. Gromov, V. D. Milman, “Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces”, Compositio Math., 62:3 (1987), 263-282 | MR | Zbl