Localization for Hyperbolic Measures on Infinite-Dimensional Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 40-54

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of the extreme points of families of concave measures on infinite-dimensional locally convex spaces are studied. The localization method is generalized to hyperbolic measures on Fréchet spaces.
Keywords: localization, hyperbolic measure, bisection method.
@article{FAA_2021_55_4_a2,
     author = {A. N. Kalinin},
     title = {Localization for {Hyperbolic} {Measures} on {Infinite-Dimensional} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {40--54},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a2/}
}
TY  - JOUR
AU  - A. N. Kalinin
TI  - Localization for Hyperbolic Measures on Infinite-Dimensional Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 40
EP  - 54
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a2/
LA  - ru
ID  - FAA_2021_55_4_a2
ER  - 
%0 Journal Article
%A A. N. Kalinin
%T Localization for Hyperbolic Measures on Infinite-Dimensional Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 40-54
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a2/
%G ru
%F FAA_2021_55_4_a2
A. N. Kalinin. Localization for Hyperbolic Measures on Infinite-Dimensional Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 40-54. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a2/