Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_4_a0, author = {A. \'Alvarez and J. L. Bravo and C. Christopher and P. Marde\v{s}i\'c}, title = {Infinitesimal {Center} {Problem} on {Zero} {Cycles} and the {Composition} {Conjecture}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--21}, publisher = {mathdoc}, volume = {55}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a0/} }
TY - JOUR AU - A. Álvarez AU - J. L. Bravo AU - C. Christopher AU - P. Mardešić TI - Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2021 SP - 3 EP - 21 VL - 55 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a0/ LA - ru ID - FAA_2021_55_4_a0 ER -
%0 Journal Article %A A. Álvarez %A J. L. Bravo %A C. Christopher %A P. Mardešić %T Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture %J Funkcionalʹnyj analiz i ego priloženiâ %D 2021 %P 3-21 %V 55 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a0/ %G ru %F FAA_2021_55_4_a0
A. Álvarez; J. L. Bravo; C. Christopher; P. Mardešić. Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 3-21. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a0/
[1] A. Álvarez, J. L. Bravo, C. Christopher, “On the trigonometric moment problem”, Ergodic Theory Dynam. Systems, 34:1 (2014), 1–20 | DOI | MR | Zbl
[2] A. Álvarez, J. L. Bravo, P. Mardešić, “Vanishing Abelian integrals on zero-dimensional cycles”, Proc. London Math. Soc., 107:6 (2013), 1302–1330 | DOI | MR | Zbl
[3] A. Álvarez, J. L. Bravo, P. Mardešić, “Inductive solution of the tangential center problem on zero-cycles”, Mosc. Math. J., 13:4 (2013), 555–583 | DOI | MR | Zbl
[4] M. A. M. Alwash, “On a condition for a centre of cubic non-autonomous equations”, Proc. Royal Soc. Edinburgh: Sec. A Math., 113:3–4 (1989), 289–291 | DOI | MR | Zbl
[5] M. A. M. Alwash, N. G. Lloyd, “Non-autonomous equations related to polynomial two-dimensional systems”, Proc. Royal Soc. Edinburgh: Sec. A Math., 105:1 (1987), 129–152 | DOI | MR | Zbl
[6] V. I. Arnold, Zadachi Arnolda, FAZIS, M., 2000 | MR
[7] V. I. Arnold, Dynamical Systems, v. VI, Springer-Verlag, Berlin–Hedelberg–New York, 1993 | MR | Zbl
[8] G. Binyamini, D. Novikov, S. Yakovenko, “On the number of zeros of Abelian integrals, A constructive solution of the infinitesimal Hilbert sixteenth problem”, Invent. Math., 181:2 (2010), 227–289 | DOI | MR | Zbl
[9] M. Briskin, J.-P. Françoise, Y. Yomdin, “The Bautin ideal of the Abel equation”, Nonlinearity, 11:3 (1998), 41–53 | DOI | MR
[10] M. Briskin, J.-P. Françoise, Y. Yomdin, “Center conditions, compositions of polynomials and moments on algebraic curve”, Ergodic Theory Dynam. Systems, 19:5 (1999), 1201–1220 | DOI | MR | Zbl
[11] M. Briskin, J.-P. Françoise, Y. Yomdin, “Center conditions. II: Parametric and model center problems”, Israel. J. Math., 118 (2000), 61–82 | DOI | MR | Zbl
[12] M. Briskin, J.-P. Françoise, Y. Yomdin, “Center conditions. III: Parametric and model center problems”, Israel J. Math., 118 (2000), 83–108 | DOI | MR | Zbl
[13] M. Briskin, N. Roytvarf, Y. Yomdin, “Center conditions at infinity for Abel differential equation”, Ann. of Math., 172:1 (2010), 437–483 | DOI | MR | Zbl
[14] A. Cima, A. Gasull, F. Mañosas, “Centers for trigonometric Abel equations”, Qual. Theory Dynam. Systems, 11:1 (2012), 19–37 | DOI | MR | Zbl
[15] A. Cima, A. Gasull, F. Mañosas, “A simple solution of some composition conjectures for Abel equations”, J. Math. Anal. Appl., 398:2 (2013), 477–486 | DOI | MR | Zbl
[16] C. Christopher, C. Li, Limit Cycles of Differential Equations, Advanced courses in Mathematics-CRM Barselona, Birkhäuser, Basel, 2007 | MR | Zbl
[17] K. Kristofer, P. Mardeshich, “Problema monodromii i infinitezimalnaya problema fokusa”, Funkts. analiz i ego pril., 44:1 (2010), 27–43 | DOI | MR
[18] F. Dumortier, R. Roussarie, “Abelian integrals and limit cycles”, J. Differential Equations, 227:1 (2006), 116–165 | DOI | MR | Zbl
[19] C. Ehresmann, “Les connexions infinitésimales dans un espace fibré différentiable”, Séminaire Bourbaki, 1, no. 24, Société Mathématique de France, Paris, 1952, 153–168 | MR
[20] S. Evdokimov, I. Ponomarenko, “A new look at the Burnside–Schur theorem”, Bull. London Math. Soc., 37:4 (2005), 535–546 | DOI | MR | Zbl
[21] O. Forster, Lectures on Riemann Surfaces, Springer-Verlag, New York–Heidelberg–\break Berlin, 1981 | MR | Zbl
[22] L. Gavrilov, H. Movasati, “The infinitesimal 16th Hilbert problem in dimension zero”, Bull. Sci. Math., 131:3 (2007), 242–257 | DOI | MR | Zbl
[23] L. Gavrilov, F. Pakovich, “Moments on Riemann surfaces and hyperelliptic Abelian integrals”, Comm. Math. Helvetici, 89:1 (2014), 125–155 | DOI | MR | Zbl
[24] J. Gine, M. Grau, X. Santallusia, “A counterexample to the composition condition conjecture for polynomial Abel differential equations”, Ergodic Theory Dynam. Systems, 39:12 (2019), 3347–3352 | DOI | MR | Zbl
[25] Yu. S. Ilyashenko, “Vozniknovenie predelnykh tsiklov $dw/dz = -R_z/R_w$, gde $R(z;w)$ — mnogochlen”, Matem. sb., 78:3 (1969), 360–373 | Zbl
[26] F. Pakovich, “A counterexample to the “composition conjecture””, Proc. Amer. Math. Soc., 130:12 (2002), 3747–3749 | DOI | MR | Zbl
[27] F. Pakovich, “Solution of the parametric center problem for Abel differential equation”, J. Eur. Math. Soc., 19:8 (2017), 2343–2369 | DOI | MR | Zbl
[28] F. Pakovich, M. Muzychuk, “Solution of the polynomial moment problem”, Proc. Lond. Math. Soc., 99:3 (2009), 633–657 | DOI | MR | Zbl
[29] B. L. van der Varden, Algebra, Frederick Ungar Publishing Co., M., 1979 | MR
[30] Z. Zhou, V. G. Romanovski, “The center problem and the composition condition for a family of quartic differential systems”, Electron. J. Qualitative Theory Differential Equations, 15 (2018), 1–17 | MR
[31] Z. Zhou, Y. Yan, “On the composition center for a class of rigid system”, Bull. Brazilian Math. Soc., New Series, 51:1 (2020), 139–155 | DOI | MR | Zbl