Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the analog of the classical infinitesimal center problem in the plane, but for zero cycles. We define the displacement function in this context and prove that it is identically zero if and only if the deformation has a composition factor. That is, we prove that here the composition conjecture is true, in contrast with the tangential center problem on zero cycles. Finally, we give examples of applications of our results.
Keywords: infinitesimal center, tangential center, Abelian integral
Mots-clés : composition conjecture, monodromy.
@article{FAA_2021_55_4_a0,
     author = {A. \'Alvarez and J. L. Bravo and C. Christopher and P. Marde\v{s}i\'c},
     title = {Infinitesimal {Center} {Problem} on {Zero} {Cycles} and the {Composition} {Conjecture}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a0/}
}
TY  - JOUR
AU  - A. Álvarez
AU  - J. L. Bravo
AU  - C. Christopher
AU  - P. Mardešić
TI  - Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 3
EP  - 21
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a0/
LA  - ru
ID  - FAA_2021_55_4_a0
ER  - 
%0 Journal Article
%A A. Álvarez
%A J. L. Bravo
%A C. Christopher
%A P. Mardešić
%T Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 3-21
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a0/
%G ru
%F FAA_2021_55_4_a0
A. Álvarez; J. L. Bravo; C. Christopher; P. Mardešić. Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 4, pp. 3-21. http://geodesic.mathdoc.fr/item/FAA_2021_55_4_a0/

[1] A. Álvarez, J. L. Bravo, C. Christopher, “On the trigonometric moment problem”, Ergodic Theory Dynam. Systems, 34:1 (2014), 1–20 | DOI | MR | Zbl

[2] A. Álvarez, J. L. Bravo, P. Mardešić, “Vanishing Abelian integrals on zero-dimensional cycles”, Proc. London Math. Soc., 107:6 (2013), 1302–1330 | DOI | MR | Zbl

[3] A. Álvarez, J. L. Bravo, P. Mardešić, “Inductive solution of the tangential center problem on zero-cycles”, Mosc. Math. J., 13:4 (2013), 555–583 | DOI | MR | Zbl

[4] M. A. M. Alwash, “On a condition for a centre of cubic non-autonomous equations”, Proc. Royal Soc. Edinburgh: Sec. A Math., 113:3–4 (1989), 289–291 | DOI | MR | Zbl

[5] M. A. M. Alwash, N. G. Lloyd, “Non-autonomous equations related to polynomial two-dimensional systems”, Proc. Royal Soc. Edinburgh: Sec. A Math., 105:1 (1987), 129–152 | DOI | MR | Zbl

[6] V. I. Arnold, Zadachi Arnolda, FAZIS, M., 2000 | MR

[7] V. I. Arnold, Dynamical Systems, v. VI, Springer-Verlag, Berlin–Hedelberg–New York, 1993 | MR | Zbl

[8] G. Binyamini, D. Novikov, S. Yakovenko, “On the number of zeros of Abelian integrals, A constructive solution of the infinitesimal Hilbert sixteenth problem”, Invent. Math., 181:2 (2010), 227–289 | DOI | MR | Zbl

[9] M. Briskin, J.-P. Françoise, Y. Yomdin, “The Bautin ideal of the Abel equation”, Nonlinearity, 11:3 (1998), 41–53 | DOI | MR

[10] M. Briskin, J.-P. Françoise, Y. Yomdin, “Center conditions, compositions of polynomials and moments on algebraic curve”, Ergodic Theory Dynam. Systems, 19:5 (1999), 1201–1220 | DOI | MR | Zbl

[11] M. Briskin, J.-P. Françoise, Y. Yomdin, “Center conditions. II: Parametric and model center problems”, Israel. J. Math., 118 (2000), 61–82 | DOI | MR | Zbl

[12] M. Briskin, J.-P. Françoise, Y. Yomdin, “Center conditions. III: Parametric and model center problems”, Israel J. Math., 118 (2000), 83–108 | DOI | MR | Zbl

[13] M. Briskin, N. Roytvarf, Y. Yomdin, “Center conditions at infinity for Abel differential equation”, Ann. of Math., 172:1 (2010), 437–483 | DOI | MR | Zbl

[14] A. Cima, A. Gasull, F. Mañosas, “Centers for trigonometric Abel equations”, Qual. Theory Dynam. Systems, 11:1 (2012), 19–37 | DOI | MR | Zbl

[15] A. Cima, A. Gasull, F. Mañosas, “A simple solution of some composition conjectures for Abel equations”, J. Math. Anal. Appl., 398:2 (2013), 477–486 | DOI | MR | Zbl

[16] C. Christopher, C. Li, Limit Cycles of Differential Equations, Advanced courses in Mathematics-CRM Barselona, Birkhäuser, Basel, 2007 | MR | Zbl

[17] K. Kristofer, P. Mardeshich, “Problema monodromii i infinitezimalnaya problema fokusa”, Funkts. analiz i ego pril., 44:1 (2010), 27–43 | DOI | MR

[18] F. Dumortier, R. Roussarie, “Abelian integrals and limit cycles”, J. Differential Equations, 227:1 (2006), 116–165 | DOI | MR | Zbl

[19] C. Ehresmann, “Les connexions infinitésimales dans un espace fibré différentiable”, Séminaire Bourbaki, 1, no. 24, Société Mathématique de France, Paris, 1952, 153–168 | MR

[20] S. Evdokimov, I. Ponomarenko, “A new look at the Burnside–Schur theorem”, Bull. London Math. Soc., 37:4 (2005), 535–546 | DOI | MR | Zbl

[21] O. Forster, Lectures on Riemann Surfaces, Springer-Verlag, New York–Heidelberg–\break Berlin, 1981 | MR | Zbl

[22] L. Gavrilov, H. Movasati, “The infinitesimal 16th Hilbert problem in dimension zero”, Bull. Sci. Math., 131:3 (2007), 242–257 | DOI | MR | Zbl

[23] L. Gavrilov, F. Pakovich, “Moments on Riemann surfaces and hyperelliptic Abelian integrals”, Comm. Math. Helvetici, 89:1 (2014), 125–155 | DOI | MR | Zbl

[24] J. Gine, M. Grau, X. Santallusia, “A counterexample to the composition condition conjecture for polynomial Abel differential equations”, Ergodic Theory Dynam. Systems, 39:12 (2019), 3347–3352 | DOI | MR | Zbl

[25] Yu. S. Ilyashenko, “Vozniknovenie predelnykh tsiklov $dw/dz = -R_z/R_w$, gde $R(z;w)$ — mnogochlen”, Matem. sb., 78:3 (1969), 360–373 | Zbl

[26] F. Pakovich, “A counterexample to the “composition conjecture””, Proc. Amer. Math. Soc., 130:12 (2002), 3747–3749 | DOI | MR | Zbl

[27] F. Pakovich, “Solution of the parametric center problem for Abel differential equation”, J. Eur. Math. Soc., 19:8 (2017), 2343–2369 | DOI | MR | Zbl

[28] F. Pakovich, M. Muzychuk, “Solution of the polynomial moment problem”, Proc. Lond. Math. Soc., 99:3 (2009), 633–657 | DOI | MR | Zbl

[29] B. L. van der Varden, Algebra, Frederick Ungar Publishing Co., M., 1979 | MR

[30] Z. Zhou, V. G. Romanovski, “The center problem and the composition condition for a family of quartic differential systems”, Electron. J. Qualitative Theory Differential Equations, 15 (2018), 1–17 | MR

[31] Z. Zhou, Y. Yan, “On the composition center for a class of rigid system”, Bull. Brazilian Math. Soc., New Series, 51:1 (2020), 139–155 | DOI | MR | Zbl