Rational hypergeometric identities
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 91-97
Cet article a éte moissonné depuis la source Math-Net.Ru
A special singular limit $\omega_1/\omega_2 \to 1$ is considered for the Faddeev modular quantum dilogarithm (hyperbolic gamma function) and the corresponding hyperbolic integrals. It brings a new class of hypergeometric identities associated with bilateral sums of Mellin–Barnes type integrals of particular Pochhammer symbol products.
Keywords:
modular quantum dilogarithm, hyperbolic gamma function, hypergeometric identities.
@article{FAA_2021_55_3_a8,
author = {G. A. Sarkissian and V. P. Spiridonov},
title = {Rational hypergeometric identities},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {91--97},
year = {2021},
volume = {55},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a8/}
}
G. A. Sarkissian; V. P. Spiridonov. Rational hypergeometric identities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 91-97. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a8/
[1] G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, no. 71, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[2] L. D. Faddeev, Proc. Internat. School Phys. Enrico Fermi, no. 127, IOS Press, Amsterdam, 1994, 117–135
[3] L. D. Faddeev, Lett. Math. Phys., 34:3 (1995), 249–254 | DOI | MR | Zbl
[4] E. M. Rains, Ramanujan J., 18:3 (2009), 257–306 | DOI | MR | Zbl
[5] G. A. Sarkissian, V. P. Spiridonov, SIGMA, 16 (2020), 074 | Zbl
[6] V. P. Spiridonov, UMN, 56:1 (2001), 181–182 | DOI | MR | Zbl
[7] V. P. Spiridonov, UMN, 63:3 (2008), 3–72 | DOI | MR | Zbl