Rational hypergeometric identities
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 91-97

Voir la notice de l'article provenant de la source Math-Net.Ru

A special singular limit $\omega_1/\omega_2 \to 1$ is considered for the Faddeev modular quantum dilogarithm (hyperbolic gamma function) and the corresponding hyperbolic integrals. It brings a new class of hypergeometric identities associated with bilateral sums of Mellin–Barnes type integrals of particular Pochhammer symbol products.
Keywords: modular quantum dilogarithm, hyperbolic gamma function, hypergeometric identities.
@article{FAA_2021_55_3_a8,
     author = {G. A. Sarkissian and V. P. Spiridonov},
     title = {Rational hypergeometric identities},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {91--97},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a8/}
}
TY  - JOUR
AU  - G. A. Sarkissian
AU  - V. P. Spiridonov
TI  - Rational hypergeometric identities
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 91
EP  - 97
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a8/
LA  - ru
ID  - FAA_2021_55_3_a8
ER  - 
%0 Journal Article
%A G. A. Sarkissian
%A V. P. Spiridonov
%T Rational hypergeometric identities
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 91-97
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a8/
%G ru
%F FAA_2021_55_3_a8
G. A. Sarkissian; V. P. Spiridonov. Rational hypergeometric identities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 91-97. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a8/