Rational hypergeometric identities
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 91-97
Voir la notice de l'article provenant de la source Math-Net.Ru
A special singular limit $\omega_1/\omega_2 \to 1$ is considered for the Faddeev modular
quantum dilogarithm (hyperbolic gamma function) and the corresponding hyperbolic integrals.
It brings a new class of hypergeometric identities associated with bilateral
sums of Mellin–Barnes type integrals of particular Pochhammer symbol products.
Keywords:
modular quantum dilogarithm, hyperbolic gamma function, hypergeometric identities.
@article{FAA_2021_55_3_a8,
author = {G. A. Sarkissian and V. P. Spiridonov},
title = {Rational hypergeometric identities},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {91--97},
publisher = {mathdoc},
volume = {55},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a8/}
}
G. A. Sarkissian; V. P. Spiridonov. Rational hypergeometric identities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 91-97. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a8/