Connection on the group of diffeomorphisms as a bundle over the space of functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 82-84
Cet article a éte moissonné depuis la source Math-Net.Ru
Jacobian determines a bundle with total space consisting of orientation-preserving diffeomorphisms of a (connected) manifold over the space of positive functions on this manifold (with integral equal to volume for a compact manifold). It is proved that, for the $n$-sphere with standard metric, there is a unique connection on this bundle that is invariant with respect to all isometries of the sphere, and a description of this connection is given.
Keywords:
group of diffeomorphisms, manifold of constant curvature, connection.
@article{FAA_2021_55_3_a6,
author = {S. M. Gusein-Zade},
title = {Connection on the group of diffeomorphisms as a bundle over the space of functions},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {82--84},
year = {2021},
volume = {55},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a6/}
}
S. M. Gusein-Zade. Connection on the group of diffeomorphisms as a bundle over the space of functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 3, pp. 82-84. http://geodesic.mathdoc.fr/item/FAA_2021_55_3_a6/
[1] V. I. Arnold, B. A. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, no. 125, Springer-Verlag, New York, 1998 | DOI | MR | Zbl
[2] S. M. Gusein-Zade, V. S. Tikunov, “Chislennye metody sozdaniya anamorfirovannykh kartograficheskikh izobrazhenii”, Geodeziya i kartografiya, 1990, no. 1, 38–44
[3] S. M. Gusein-Zade, V. S. Tikunov, Anamorfozy: chto eto takoe?, Editorial URSS, M., 1999