Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2021_55_2_a8, author = {V. A. Kozlov and E. \`E. Lokharu}, title = {On rotational waves of greatest height on water of finite depth}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {107--112}, publisher = {mathdoc}, volume = {55}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a8/} }
TY - JOUR AU - V. A. Kozlov AU - E. È. Lokharu TI - On rotational waves of greatest height on water of finite depth JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2021 SP - 107 EP - 112 VL - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a8/ LA - ru ID - FAA_2021_55_2_a8 ER -
V. A. Kozlov; E. È. Lokharu. On rotational waves of greatest height on water of finite depth. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 2, pp. 107-112. http://geodesic.mathdoc.fr/item/FAA_2021_55_2_a8/
[1] M. Allen, H. Shahgholian, Arch. Rational Mech. Anal., 234:3 (2019), 1413–1444 | DOI | MR | Zbl
[2] C. J. Amick, L. E. Fraenkel, Trans. Amer. Math. Soc., 299:1 (1987), 273–273 | DOI | MR | Zbl
[3] C. J. Amick, L. E. Fraenkel, J. F. Toland, Acta Math., 148 (1982), 193–214 | DOI | MR | Zbl
[4] C. J. Amick, J. F. Toland, Philos. Trans. Roy. Soc. London Ser. A, 303:1481 (1981), 633–669 | DOI | MR | Zbl
[5] C. J. Amick, J. F. Toland, Arch. Rational Mech. Anal., 76:1 (1981), 9–95 | DOI | MR | Zbl
[6] B. Buffoni, J. Toland, Analytic Theory of Global Bifurcation, Princeton Series Applied Math., Princeton Univ. Press, Princeton, NJ, 2003 | MR | Zbl
[7] A. Constantin, W. Strauss, Comm. Pure Appl. Math., 57:4 (2004), 481–527 | DOI | MR | Zbl
[8] A. Constantin, W. Strauss, Arch. Rational Mech. Anal., 202:1 (2011), 133–175 | DOI | MR | Zbl
[9] A. Constantin, W. Strauss, E. Vărvărucă, Acta Math., 217:2 (2016), 195–262 | DOI | MR | Zbl
[10] M. D. Groves, E. Wahlén, Phys. D: Nonlinear Phenomena, 237:10–12 (2008), 1530–1538 | DOI | MR | Zbl
[11] V. Kozlov, E. Lokharu, arXiv: 2103.14451
[12] V. Kozlov, N. Kuznetsov, E. Lokharu, J. Fluid Mech., 765 (2015), R1 | DOI | MR | Zbl
[13] V. Kozlov, N. Kuznetsov, E. Lokharu, J. Fluid Mech., 825 (2017), 961–1001 | DOI | MR | Zbl
[14] V. Kozlov, E. Lokharu, arXiv: 2010.14156
[15] E. Lokharu, J. Math. Fluid Mech., 2021 (to appear)
[16] J. B. McLeod, Trans. Amer. Math. Soc., 299:1 (1987), 299–299 | DOI | MR | Zbl
[17] J. B. McLeod, Stud. Appl. Math., 98:4 (1997), 311–333 | DOI | MR | Zbl
[18] P. I. Plotnikov, Dinamika sploshnoi sredy, 1982, no. 57, 41–76 | Zbl
[19] P. I. Plotnikov, J. F. Toland, Arch. Rational Mech. Anal., 171:3 (2004), 349–416 | DOI | MR | Zbl
[20] S. W. So, W. A. Strauss, J. Differential Equations, 264:6 (2018), 4136–4151 | DOI | MR | Zbl
[21] G. G. Stokes, Mathematical and Physical Papers, v. 1, Cambridge Univ. Press, Cambridge, 2009, 225–228 | MR
[22] J. F. Toland, Proc. Roy. Soc. London, Ser. A, 363:1715 (1978), 469–485 | DOI | MR | Zbl
[23] K. Varholm, SIAM J. Math. Anal., 52:5 (2020), 5066–5089 | DOI | MR | Zbl
[24] E. Varvaruca, Comm. Partial Differential Equations, 31:10 (2006), 1451–1477 | DOI | MR | Zbl
[25] E. Varvaruca, J. Differential Equations, 246:10 (2009), 4043–4076 | DOI | MR | Zbl
[26] E. Varvaruca, G. S. Weiss, Acta Math., 206:2 (2011), 363–403 | DOI | MR | Zbl
[27] E. Varvaruca, G. S. Weiss, Ann. Inst. H. Poincare (C) Nonlinear Anal., 29:6 (2012), 861–885 | DOI | MR | Zbl
[28] M. H. Wheeler, J. Fluid Mech., 768 (2015), 91–112 | DOI | MR | Zbl