Multivariate Signatures of Iterated Torus Links
Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 1, pp. 73-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the multivariate signatures of any Seifert link (that is, a union of some fibers in a Seifert homology sphere), in particular, of the union of a torus link with one or both of its cores (cored torus link). The signatures of cored torus links are used in the Degtyarev–Florens–Lecuona splicing formula for computing multivariate signatures of cables over links. We use Neumann's computation of equivariant signatures of such links. For signatures of torus links with core(s), we also rewrite Neumann's formula in terms of integral points in a certain parallelogram, similarly to Hirzebruch's formula for signatures of torus links (without cores) via integral points in a rectangle.
Keywords: multisignature, iterated torus link, splice diagram.
@article{FAA_2021_55_1_a6,
     author = {S. Yu. Orevkov},
     title = {Multivariate {Signatures} of {Iterated} {Torus} {Links}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {73--92},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a6/}
}
TY  - JOUR
AU  - S. Yu. Orevkov
TI  - Multivariate Signatures of Iterated Torus Links
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2021
SP  - 73
EP  - 92
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a6/
LA  - ru
ID  - FAA_2021_55_1_a6
ER  - 
%0 Journal Article
%A S. Yu. Orevkov
%T Multivariate Signatures of Iterated Torus Links
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2021
%P 73-92
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a6/
%G ru
%F FAA_2021_55_1_a6
S. Yu. Orevkov. Multivariate Signatures of Iterated Torus Links. Funkcionalʹnyj analiz i ego priloženiâ, Tome 55 (2021) no. 1, pp. 73-92. http://geodesic.mathdoc.fr/item/FAA_2021_55_1_a6/

[1] E. Brieskorn, “Beispiele zur Diferentialtopologie von Singularitäten”, Invent. Math., 2 (1966), 1–14 | DOI | MR | Zbl

[2] D. Cimasoni, “The Conway potential function of a graph link”, Math. Proc. Cambridge Phil. Soc., 136:2 (2004), 557–563 | DOI | MR | Zbl

[3] D. Cimasoni, V. Florens, “Generalized Seifert surfaces and signatures of colored links”, Trans. Amer. Math. Soc., 360:3 (2008), 1223–1264 | DOI | MR | Zbl

[4] A. Conway, The Levine–Tristram signature: a survey, arXiv: 1903.04477

[5] A. Conway, M. Nagel, E. Toffoli, “Multivariable signatures, genus bounds and $0.5$-solvable cobordisms”, Mich. Math. J., 69:2 (2020), 381–427 ; arXiv: 1703.07540 | DOI | MR | Zbl

[6] A. Degtyarev, V. Florens, A. Lecuona, “The signature of a splice”, Int. Math. Res. Notices (IMRN), 8 (2017), 2249–2283 | MR | Zbl

[7] A. Degtyarev, V. Florens, A. Lecuona, Slopes and signatures of links, arXiv: 1802.01836

[8] A. Degtyarev, V. Florens, A. Lecuona, “Slopes of links and signature formulas”, Contemporary Mathematics look series volume “Topology, Geometry, and Dynamics: Rokhlin–100” (to appear)

[9] D. Eisenbud, W. D. Neumann, Three-Dimensional Link Theory and Invariants of Plane Curve Singularities, Annals of Mathematics Studies, 110, Princeton University Press, Princeton, NJ, 1985 | MR | Zbl

[10] V. Florens, “Signatures of colored links with application to real algebraic curves”, J. Knot Theory Ramifications, 14:7 (2005), 883–918 | DOI | MR | Zbl

[11] C. M. Gordon, “Some aspects of classical knot theory”, Knot Theory Proceedings, Plans-sur-Bex, Switzerland, 1977, Lect. Notes in Math., 685, Springer-Verlag, Berlin, 1978, 1–60 | DOI | MR

[12] R. A. Litherland, “Signatures of iterated torus knots”, Topology of Low-Dimensional Manifolds, Proc. Second Sussex Conf. (Chelwood Gate, 1977), Lecture Notes in Math., 722, Springer-Verlag, Berlin, 1979, 71–84 | DOI | MR

[13] T. Matumoto, “On the signature invariants of a non-singular complex sesquilinear form”, J. Math. Soc. Japan, 29:1 (1977), 67–71 | DOI | MR | Zbl

[14] W. D. Neumann, “Invariants of plane curve singularities”, Noeuds, Tresses et Singularités, C. R. Sémin. (Plans-sur-Bex, 1982), Monogr. Enseign. Math., 31, 1983, 223–232 | MR | Zbl

[15] W. D. Neumann, “Splicing algebraic links”, Complex Analytic Singularities, Adv. Studies in Pure Math., 8, North-Holland, Amsterdam–New York–Oxford; Kinokunlya Company, Tokyo, 1987, 349–361 | DOI | MR

[16] S. Yu. Orevkov, “Plane real algebraic curves of odd degree with a deep nest”, J. Knot Theory Ramifications, 14:4 (2005), 497–522 | DOI | MR | Zbl

[17] O. Viro, “Twisted acyclicity of a circle and signatures of a link”, J. Knot Theory Ramifications, 18:6 (2009), 729–755 | DOI | MR | Zbl