Generalized Trace Formula for Polynomials\\ Orthogonal in Continuous-Discrete Sobolev Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 102-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

In continuous-discrete Sobolev spaces a generalized trace formula for orthogonal polynomials $\{\widehat{q}_n\}_{n=0}^\infty$ is obtained. The proof of this formula is based on the representation of the Fejér kernel for the system $\{\widehat{q}_n\}_{n=0}^\infty$. As a consequence, a generalized trace formula for Gegenbauer–Sobolev polynomials in a discrete Sobolev space is obtained.
Mots-clés : orthogonal polynomials, trace formula, Fejér kernel, Sobolev spaces
Keywords: Gegenbauer–Sobolev polynomials, continuous-discrete spaces, symmetric polynomials, Chebyshev polynomials.
@article{FAA_2020_54_4_a8,
     author = {B. P. Osilenker},
     title = {Generalized {Trace} {Formula} for {Polynomials\\} {Orthogonal} in {Continuous-Discrete} {Sobolev} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {102--105},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a8/}
}
TY  - JOUR
AU  - B. P. Osilenker
TI  - Generalized Trace Formula for Polynomials\\ Orthogonal in Continuous-Discrete Sobolev Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 102
EP  - 105
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a8/
LA  - ru
ID  - FAA_2020_54_4_a8
ER  - 
%0 Journal Article
%A B. P. Osilenker
%T Generalized Trace Formula for Polynomials\\ Orthogonal in Continuous-Discrete Sobolev Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 102-105
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a8/
%G ru
%F FAA_2020_54_4_a8
B. P. Osilenker. Generalized Trace Formula for Polynomials\\ Orthogonal in Continuous-Discrete Sobolev Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 102-105. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a8/

[1] V. A. Vinokurov, V. A. Sadovnichii, Differents. uravneniya, 38:6 (2002), 735–751 | MR | Zbl

[2] A. S. Kostenko, M. M. Malamud, Funkts. analiz i ego pril., 44:2 (2010), 87–91 | DOI | MR | Zbl

[3] A. M. Savchuk, A. A. Shkalikov, Matem. zametki, 66:6 (1999), 897–912 | DOI | Zbl

[4] I. I. Sharapudinov, Izv. RAN. Ser. matem., 82:1 (2018), 225–258 | DOI | MR | Zbl

[5] W. D. Evans, L. L. Littlejohn, F. Marcellán, C. Markett, A. Ronveaux, SIAM J. Math. Anal., 26:2 (1995), 446–467 | DOI | MR | Zbl

[6] F. Marcellán, Y. Xu, Expo. Math., 33:3 (2015), 308–352 | DOI | MR | Zbl

[7] F. Marcellán, B. P. Osilenker, I. A. Rocha, J. Approx. Theory, 117:1 (2002), 1–22 | DOI | MR | Zbl

[8] B. P. Osilenker, J. Approx. Theory, 141:1 (2006), 70–97 | DOI | MR | Zbl

[9] I. A. Rocha, F. Marcellán, L. Salto, J. Approx. Theory, 121:2 (2003), 336–356 | DOI | MR | Zbl

[10] V. A. Sadovnichii, V. E. Podolskii, UMN, 61:5 (2006), 89–156 | DOI | MR | Zbl

[11] J. Dombrowski, P. Nevai, SIAM J. Math. Anal., 17:3 (1986), 752–759 | DOI | MR | Zbl

[12] H. Bavinck, H. G. Meijer, Indag. Math. (N.S.), 1:1 (1990), 7–14 | DOI | MR | Zbl

[13] B. P. Osilenker, Sib. matem. zh., 56:2 (2015), 420–435 | MR | Zbl

[14] Y. Bavinck, J. Comp. Appl. Math., 118:1-2 (2000), 23–42 | DOI | MR | Zbl

[15] P. Nevai, Progress in Approximation Theory, Springer-Verlag, New York, 1992, 79–104 | DOI | MR | Zbl