Generalized Trace Formula for Polynomials\\ Orthogonal in Continuous-Discrete Sobolev Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 102-105

Voir la notice de l'article provenant de la source Math-Net.Ru

In continuous-discrete Sobolev spaces a generalized trace formula for orthogonal polynomials $\{\widehat{q}_n\}_{n=0}^\infty$ is obtained. The proof of this formula is based on the representation of the Fejér kernel for the system $\{\widehat{q}_n\}_{n=0}^\infty$. As a consequence, a generalized trace formula for Gegenbauer–Sobolev polynomials in a discrete Sobolev space is obtained.
Mots-clés : orthogonal polynomials, trace formula, Fejér kernel, Sobolev spaces
Keywords: Gegenbauer–Sobolev polynomials, continuous-discrete spaces, symmetric polynomials, Chebyshev polynomials.
@article{FAA_2020_54_4_a8,
     author = {B. P. Osilenker},
     title = {Generalized {Trace} {Formula} for {Polynomials\\} {Orthogonal} in {Continuous-Discrete} {Sobolev} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {102--105},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a8/}
}
TY  - JOUR
AU  - B. P. Osilenker
TI  - Generalized Trace Formula for Polynomials\\ Orthogonal in Continuous-Discrete Sobolev Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 102
EP  - 105
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a8/
LA  - ru
ID  - FAA_2020_54_4_a8
ER  - 
%0 Journal Article
%A B. P. Osilenker
%T Generalized Trace Formula for Polynomials\\ Orthogonal in Continuous-Discrete Sobolev Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 102-105
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a8/
%G ru
%F FAA_2020_54_4_a8
B. P. Osilenker. Generalized Trace Formula for Polynomials\\ Orthogonal in Continuous-Discrete Sobolev Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 102-105. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a8/