Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2020_54_4_a6, author = {N. S. Ustinov}, title = {On the {Constancy} of the {Extremal} {Function} in the {Embedding} {Theorem} of {Fractional} {Order}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {85--97}, publisher = {mathdoc}, volume = {54}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a6/} }
TY - JOUR AU - N. S. Ustinov TI - On the Constancy of the Extremal Function in the Embedding Theorem of Fractional Order JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2020 SP - 85 EP - 97 VL - 54 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a6/ LA - ru ID - FAA_2020_54_4_a6 ER -
N. S. Ustinov. On the Constancy of the Extremal Function in the Embedding Theorem of Fractional Order. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 85-97. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a6/
[1] A. Cotsiolis, N. K. Tavoularis, “Best constants for Sobolev inequalities for higher order fractional derivatives”, J. Math. Anal. Appl., 295:1 (2004), 225–236 | DOI | MR | Zbl
[2] R. Musina, A. I. Nazarov, “On fractional Laplacians”, Comm. Partial Differential Equations, 39:9 (2014), 1780–1790 | DOI | MR | Zbl
[3] R. Musina, A. I. Nazarov, “On the Sobolev and Hardy constants for the fractional Navier Laplacian”, Nonlinear Anal.: Theory Methods Appl., 121 (2015), 123–129 | DOI | MR | Zbl
[4] A. L. Pereira, M. C. Pereira, “A generic property for the eigenfunctions of the Laplacian”, Topol. Methods Nonlinear. Anal., 20:2 (2002), 283–313 | DOI | MR | Zbl
[5] V. P. Ilin, “Nekotorye integralnye neravenstva i ikh primeneniya v teorii differentsiruemykh funktsii mnogikh peremennykh”, Matem. sb., 54(96):3 (1961), 331–380 | Zbl
[6] A. I. Nazarov, “O tochnoi konstante v odnomernoi teoreme vlozheniya”, Problemy mat. analiza, no. 19, Nauchn. kn., Novosibirsk, 1999, 149–163
[7] A. I. Nazarov, “O tochnykh konstantakh v odnomernykh teoremakh vlozheniya proizvolnogo poryadka”, Voprosy sovremennoi teorii approksimatsii, Izd-vo Sankt-Peterburgskogo universiteta, 2004, 146–158
[8] A. I. Nazarov, A. P. Scheglova, “O nekotorykh svoistvakh ekstremali v variatsionnoi zadache, porozhdennoi teoremoi vlozheniya Soboleva”, Problemy mat. analiza, 27, T. Rozhkovskaya, Novosibirsk, 2004, 109–136
[9] L. N. Slobodetskii, “Obobschennye prostranstva S. L. Soboleva i ikh prilozhenie k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uch. zap. Leningr. gos. ped. in-ta im. A. I. Gertsena, 197 (1958), 54–112 | Zbl
[10] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980
[11] N. S. Ustinov, “O razreshimosti polulineinoi zadachi so spektralnym drobnym laplasianom Neimana i kriticheskoi pravoi chastyu”, Algebra i analiz (to appear)
[12] A. P. Scheglova, “Zadacha Neimana dlya polulineinogo ellipticheskogo uravneniya v tonkom tsilindre. Resheniya s naimenshei energiei”, Zap. nauchn. sem. POMI, 348, 2007, 272–302