On the Constancy of the Extremal Function in the Embedding Theorem of Fractional Order
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 85-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the constancy of the minimizer in the fractional embedding theorem $\mathcal{H}^s(\Omega) \hookrightarrow L_q(\Omega)$ for a bounded Lipschitz domain $\Omega$, depending on the domain size. For the family of domains $\varepsilon \Omega$, we prove that, for small dilation coefficients $\varepsilon$, the unique minimizer is constant, whereas for large $\varepsilon$, a constant function is not even a local minimizer. We also discuss whether a constant function is a global minimizer if it is a local one.
Keywords: fractional Laplace operators, constancy of the minimizer, spectral Dirichlet Laplacian.
@article{FAA_2020_54_4_a6,
     author = {N. S. Ustinov},
     title = {On the {Constancy} of the {Extremal} {Function} in the {Embedding} {Theorem} of {Fractional} {Order}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--97},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a6/}
}
TY  - JOUR
AU  - N. S. Ustinov
TI  - On the Constancy of the Extremal Function in the Embedding Theorem of Fractional Order
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 85
EP  - 97
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a6/
LA  - ru
ID  - FAA_2020_54_4_a6
ER  - 
%0 Journal Article
%A N. S. Ustinov
%T On the Constancy of the Extremal Function in the Embedding Theorem of Fractional Order
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 85-97
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a6/
%G ru
%F FAA_2020_54_4_a6
N. S. Ustinov. On the Constancy of the Extremal Function in the Embedding Theorem of Fractional Order. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 85-97. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a6/

[1] A. Cotsiolis, N. K. Tavoularis, “Best constants for Sobolev inequalities for higher order fractional derivatives”, J. Math. Anal. Appl., 295:1 (2004), 225–236 | DOI | MR | Zbl

[2] R. Musina, A. I. Nazarov, “On fractional Laplacians”, Comm. Partial Differential Equations, 39:9 (2014), 1780–1790 | DOI | MR | Zbl

[3] R. Musina, A. I. Nazarov, “On the Sobolev and Hardy constants for the fractional Navier Laplacian”, Nonlinear Anal.: Theory Methods Appl., 121 (2015), 123–129 | DOI | MR | Zbl

[4] A. L. Pereira, M. C. Pereira, “A generic property for the eigenfunctions of the Laplacian”, Topol. Methods Nonlinear. Anal., 20:2 (2002), 283–313 | DOI | MR | Zbl

[5] V. P. Ilin, “Nekotorye integralnye neravenstva i ikh primeneniya v teorii differentsiruemykh funktsii mnogikh peremennykh”, Matem. sb., 54(96):3 (1961), 331–380 | Zbl

[6] A. I. Nazarov, “O tochnoi konstante v odnomernoi teoreme vlozheniya”, Problemy mat. analiza, no. 19, Nauchn. kn., Novosibirsk, 1999, 149–163

[7] A. I. Nazarov, “O tochnykh konstantakh v odnomernykh teoremakh vlozheniya proizvolnogo poryadka”, Voprosy sovremennoi teorii approksimatsii, Izd-vo Sankt-Peterburgskogo universiteta, 2004, 146–158

[8] A. I. Nazarov, A. P. Scheglova, “O nekotorykh svoistvakh ekstremali v variatsionnoi zadache, porozhdennoi teoremoi vlozheniya Soboleva”, Problemy mat. analiza, 27, T. Rozhkovskaya, Novosibirsk, 2004, 109–136

[9] L. N. Slobodetskii, “Obobschennye prostranstva S. L. Soboleva i ikh prilozhenie k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uch. zap. Leningr. gos. ped. in-ta im. A. I. Gertsena, 197 (1958), 54–112 | Zbl

[10] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980

[11] N. S. Ustinov, “O razreshimosti polulineinoi zadachi so spektralnym drobnym laplasianom Neimana i kriticheskoi pravoi chastyu”, Algebra i analiz (to appear)

[12] A. P. Scheglova, “Zadacha Neimana dlya polulineinogo ellipticheskogo uravneniya v tonkom tsilindre. Resheniya s naimenshei energiei”, Zap. nauchn. sem. POMI, 348, 2007, 272–302