On the Constancy of the Extremal Function in the Embedding Theorem of Fractional Order
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 85-97

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the constancy of the minimizer in the fractional embedding theorem $\mathcal{H}^s(\Omega) \hookrightarrow L_q(\Omega)$ for a bounded Lipschitz domain $\Omega$, depending on the domain size. For the family of domains $\varepsilon \Omega$, we prove that, for small dilation coefficients $\varepsilon$, the unique minimizer is constant, whereas for large $\varepsilon$, a constant function is not even a local minimizer. We also discuss whether a constant function is a global minimizer if it is a local one.
Keywords: fractional Laplace operators, constancy of the minimizer, spectral Dirichlet Laplacian.
@article{FAA_2020_54_4_a6,
     author = {N. S. Ustinov},
     title = {On the {Constancy} of the {Extremal} {Function} in the {Embedding} {Theorem} of {Fractional} {Order}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--97},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a6/}
}
TY  - JOUR
AU  - N. S. Ustinov
TI  - On the Constancy of the Extremal Function in the Embedding Theorem of Fractional Order
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 85
EP  - 97
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a6/
LA  - ru
ID  - FAA_2020_54_4_a6
ER  - 
%0 Journal Article
%A N. S. Ustinov
%T On the Constancy of the Extremal Function in the Embedding Theorem of Fractional Order
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 85-97
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a6/
%G ru
%F FAA_2020_54_4_a6
N. S. Ustinov. On the Constancy of the Extremal Function in the Embedding Theorem of Fractional Order. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 85-97. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a6/