Compact Operators and Uniform Structures in Hilbert $C^*$-Modules
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 74-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quite recently a criterion for the $\mathcal{A}$-compactness of an ajointable operator $F\colon\M\to\mathcal{N}$ between Hilbert $C^*$-modules, where $\mathcal{N}$ is countably generated, was obtained. Namely, a uniform structure (a system of pseudometrics) in $\mathcal{N}$ was discovered such that $F$ is $\mathcal{A}$-compact if and only if $F(B)$ is totally bounded, where $B\subset\M$ is the unit ball. We prove that (1) for a general $\mathcal{N}$, $\mathcal{A}$-compactness implies total boundedness, (2) for $\mathcal{N}$ with $\mathcal{N}\oplus K\cong L$, where $L$ is an uncountably generated $\ell_2$-type module, total boundedness implies compactness, and (3) for $\mathcal{N}$ close to be countably generated, it suffices to use only pseudometrics of “frame-like origin” to obtain a criterion for $\mathcal{A}$-compactness.
Keywords: Hilbert $C^*$-Module, uniform structure, totally bounded set, compact operator, $\mathcal{A}$-compact operator, frame.
@article{FAA_2020_54_4_a5,
     author = {E. V. Troitskii and D. V. Fufaev},
     title = {Compact {Operators} and {Uniform} {Structures} in {Hilbert} $C^*${-Modules}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {74--84},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a5/}
}
TY  - JOUR
AU  - E. V. Troitskii
AU  - D. V. Fufaev
TI  - Compact Operators and Uniform Structures in Hilbert $C^*$-Modules
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 74
EP  - 84
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a5/
LA  - ru
ID  - FAA_2020_54_4_a5
ER  - 
%0 Journal Article
%A E. V. Troitskii
%A D. V. Fufaev
%T Compact Operators and Uniform Structures in Hilbert $C^*$-Modules
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 74-84
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a5/
%G ru
%F FAA_2020_54_4_a5
E. V. Troitskii; D. V. Fufaev. Compact Operators and Uniform Structures in Hilbert $C^*$-Modules. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 74-84. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a5/

[1] N. Burbaki, Obschaya topologiya: Ispolzovanie veschestvennykh chisel v obschei topologii. Funktsionalnye prostranstva. Svodka rezultatov, Nauka, M., 1975 | MR

[2] M. Frank, D. R. Larson, “A module frame concept for Hilbert {$C^\ast$}-modules”, The functional and harmonic analysis of wavelets and frames, San Antonio, TX, 1999, Contemp. Math., no. 247, Amer. Math. Soc., Providence, RI, 1999, 207–233 | DOI | MR | Zbl

[3] M. Frank, D. R. Larson, “Frames in Hilbert {$C^\ast$}-modules and {$C^\ast$}-algebras”, J. Operator Theory, 48:2 (2002), 273–314 | MR | Zbl

[4] G. G. Kasparov, “Hilbert C*-modules: theorems of Stinespring and Voiculescu”, J. Operator Theory, 4 (1980), 133–150 | MR | Zbl

[5] D. J. Kečkić, Z. Lazović, “Compact and “compact” operators on standard {H}ilbert modules over $W^*$-algebras”, Ann. Funct. Anal., 9:2 (2018), 258–270 ; arXiv: 1610.06956 | DOI | MR | Zbl

[6] E. C. Lance, Hilbert {C*}-modules. A toolkit for operator algebraists, London Math. Soc. Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[7] Z. Lazović, “Compact and “compact” operators on standard {H}ilbert modules over ${C}^*$-algebras”, Adv. Oper. Theory, 3:4 (2018), 829–836 | DOI | MR | Zbl

[8] V. M. Manuilov, E. V. Troitsky, “Hilbert ${C}^*$- and ${W}^*$-modules and their morphisms”, J. Math. Sci., 98:2 (2000), 137–201 | DOI | MR | Zbl

[9] V. M. Manuilov, E. V. Troitskii, ${C}^*$-gilbertovy moduli, Faktoril Press, M., 2001

[10] E. V. Troitsky, “Geometric essence of “compact” operators on {H}ilbert {C}*-modules”, J. Math. Anal. Appl., 485:2 (2020), 123842 | DOI | MR | Zbl