Compact Operators and Uniform Structures in Hilbert $C^*$-Modules
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 74-84
Voir la notice de l'article provenant de la source Math-Net.Ru
Quite recently a criterion for the $\mathcal{A}$-compactness of an ajointable operator $F\colon\M\to\mathcal{N}$ between Hilbert $C^*$-modules, where $\mathcal{N}$ is countably generated, was obtained. Namely, a uniform structure (a system of pseudometrics) in $\mathcal{N}$ was discovered such that $F$ is $\mathcal{A}$-compact if and only if $F(B)$ is totally bounded, where $B\subset\M$ is the unit ball.
We prove that (1) for a general $\mathcal{N}$, $\mathcal{A}$-compactness implies total boundedness, (2) for $\mathcal{N}$ with $\mathcal{N}\oplus K\cong L$, where $L$ is an uncountably generated $\ell_2$-type module, total boundedness implies compactness, and (3) for $\mathcal{N}$ close to be countably generated, it suffices to use only pseudometrics of “frame-like origin” to obtain a criterion for $\mathcal{A}$-compactness.
Keywords:
Hilbert $C^*$-Module, uniform structure, totally bounded set, compact operator, $\mathcal{A}$-compact operator, frame.
@article{FAA_2020_54_4_a5,
author = {E. V. Troitskii and D. V. Fufaev},
title = {Compact {Operators} and {Uniform} {Structures} in {Hilbert} $C^*${-Modules}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {74--84},
publisher = {mathdoc},
volume = {54},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a5/}
}
TY - JOUR AU - E. V. Troitskii AU - D. V. Fufaev TI - Compact Operators and Uniform Structures in Hilbert $C^*$-Modules JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2020 SP - 74 EP - 84 VL - 54 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a5/ LA - ru ID - FAA_2020_54_4_a5 ER -
E. V. Troitskii; D. V. Fufaev. Compact Operators and Uniform Structures in Hilbert $C^*$-Modules. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 74-84. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a5/