Spaces of Dyadic Distributions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 56-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies spaces of distributions on a dyadic half-line, which is the positive half-line equipped with bitwise binary addition and Lebesgue measure. We prove the nonexistence of a space of dyadic distributions which satisfies a number of natural requirements (for instance, the property of being invariant with respect to the Walsh–Fourier transform) and, in addition, is invariant with respect to multiplication by linear functions. This, in particular, is evidence that the space of dyadic distributions suggested by S. Volosivets in 2009 is optimal. We also show applications of dyadic distributions to the theory of refinement equations and wavelets on the dyadic half-line.
Keywords: dyadic half-line, Walsh functions, Walsh–Fourier transform, wavelets.
Mots-clés : distributions, refinement equations
@article{FAA_2020_54_4_a3,
     author = {M. A. Karapetyants and V. Yu. Protasov},
     title = {Spaces of {Dyadic} {Distributions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {56--63},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a3/}
}
TY  - JOUR
AU  - M. A. Karapetyants
AU  - V. Yu. Protasov
TI  - Spaces of Dyadic Distributions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 56
EP  - 63
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a3/
LA  - ru
ID  - FAA_2020_54_4_a3
ER  - 
%0 Journal Article
%A M. A. Karapetyants
%A V. Yu. Protasov
%T Spaces of Dyadic Distributions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 56-63
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a3/
%G ru
%F FAA_2020_54_4_a3
M. A. Karapetyants; V. Yu. Protasov. Spaces of Dyadic Distributions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 4, pp. 56-63. http://geodesic.mathdoc.fr/item/FAA_2020_54_4_a3/

[1] S. S. Volosivets, “O nekotorykh prilozheniyakh P-ichnykh obobschennykh funktsii i priblizhenii sistemoi P-ichnykh sdvigov odnoi funktsii”, Sib. matem. zhurn., 50:1 (2009), 3–18 | MR | Zbl

[2] B. I. Golubov, “Dvoichnye obobschennye funktsii”, Matem. sb., 198:2 (2007), 67–90 | DOI | Zbl

[3] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987 | MR

[4] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, P-adic Analysis and Mathematical Physics, World Scientific, River Edge, 1994 | MR | Zbl

[5] F. Bruhat, “Distributions sur un groupe localemont compact et applications à l'étude des représentations des groupes $p$-adiques”, Bull. Soc. Math. France, 89 (1961), 43–75 | DOI | MR | Zbl

[6] M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press, Princeton, 2015 | MR

[7] I. Dobeshi, Desyat lektsii po veivletam, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2001

[8] M. A. Karapetyants, “Utochnyayuschie algoritmy na diadicheskoi polupryamoi”, Izv. RAN. Ser. matem., 84:5 (2020), 98–118 | DOI | MR | Zbl

[9] W. C. Lang, “Fractal multiwavelets related to the Cantor dyadic group”, Intern. J. Math. Math. Sci., 21:2 (1998), 307–317 | DOI | MR

[10] S. F. Lukomskii, G. S. Berdnikov, Yu. S. Kruss, “Ob ortogonalnosti sistemy sdvigov masshtabiruyuschei funktsii na gruppakh Vilenkina”, Matem. zametki, 98:2 (2015), 310–313 | DOI | Zbl

[11] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005

[12] V. Yu. Protasov, Yu. A. Farkov, “Diadicheskie veivlety i masshtabiruyuschie funktsii na polupryamoi”, Matem. sb., 197:10 (2006), 129–160 | DOI | Zbl

[13] E. A. Rodionov, Yu. A. Farkov, “Otsenki gladkosti diadicheskikh ortogonalnykh vspleskov tipa Dobeshi”, Matem. zametki, 86:3 (2009), 429–444 | DOI | MR | Zbl

[14] F. Schipp, W. R. Wade, P. Simon, Walsh series: An introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990 | MR | Zbl

[15] Yu. A. Farkov, “Ortogonalnye veivlety s kompaktnymi nositelyami na lokalno kompaktnykh abelevykh gruppakh”, Izv. RAN. Ser. matem., 69:3 (2005), 193–220 | DOI | MR | Zbl