Differential Inclusions with Mixed Semicontinuity Properties in a Banach Space
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 48-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

A differential inclusion whose right-hand side is the sum of two set-valued mappings in a separable Banach space is considered. The values of the first mapping are bounded and closed but not necessarily convex, and this mapping is Lipschitz continuous in the phase variable. The values of the second one are closed, and this mapping has mixed semicontinuity properties: given any phase point, it either has closed graph and takes a convex value at this point or is lower semicontinuous in its neighborhood. Under additional assumptions related to measurability and growth conditions, the existence of a solution is proved.
Keywords: lower and upper semicontinuity, set-valued Nemytskii operator, continuous selector, fixed point.
@article{FAA_2020_54_3_a4,
     author = {A. A. Tolstonogov},
     title = {Differential {Inclusions} with {Mixed} {Semicontinuity} {Properties} in a {Banach} {Space}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {48--62},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a4/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Differential Inclusions with Mixed Semicontinuity Properties in a Banach Space
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 48
EP  - 62
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a4/
LA  - ru
ID  - FAA_2020_54_3_a4
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Differential Inclusions with Mixed Semicontinuity Properties in a Banach Space
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 48-62
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a4/
%G ru
%F FAA_2020_54_3_a4
A. A. Tolstonogov. Differential Inclusions with Mixed Semicontinuity Properties in a Banach Space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 48-62. http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a4/

[1] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Springer Netherlands, Leyden, 1976 | MR

[2] A. A. Tolstonogov, “Suschestvovanie i relaksatsiya reshenii differentsialnykh vklyuchenii s neogranichennoi pravoi chastyu v banakhovom prostranstve”, Sib. matem. zhurn., 58:4 (2017), 937–953 | MR | Zbl

[3] C. Olech, “Existence of solutions of non-convex orientor fields”, Boll. Unione Mat. Ital. IV, 11:3 suppl. (1975), 189–197 | MR | Zbl

[4] S. Lojasiewicz, “Some theorems of Scorza-Dragoni type for multifunctions with applications to the problem of existence of solutions for differential multivalued equations”, Math. Control Theory, 14 (1985), 625–643 | MR | Zbl

[5] C. J. Himmelberg, F. S. Van Vleck, “Existence of solutions for generalized differential equations with unbounded right-hand side”, J. Differential Equations, 61:3 (1986), 295–320 | DOI | MR | Zbl

[6] A. Fryszkowski, L. Gorniewicz, “Mixed semicontinuous mappings and their applications to differential inclusions”, Set-Valued Anal., 8:3 (2000), 203–217 | DOI | MR | Zbl

[7] A. A. Tolstonogov, “O resheniyakh differentsialnogo vklyucheniya s neogranichennoi pravoi chastyu”, Sib. matem. zhurn., 29:5 (1988), 212–225 | MR | Zbl

[8] A. Tolstonogov, Differential inclusions in Banach space, Kluwer Acad. Publ., Dordrecht, 2000 | MR | Zbl

[9] C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72 | DOI | MR | Zbl

[10] A. Alexiewicz, “Linear functionals on Denjoy-integrable functions”, Colloq. Math., 1 (1948), 289–293 | DOI | MR | Zbl

[11] A. A. Tolstonogov, D. A. Tolstonogov, “$L_p$-continuous extreme selectors of multifunctions with decomposable values: Existence theorems”, Set-Valued Anal., 4:2 (1996), 173–203 | DOI | MR | Zbl

[12] N. Burbaki, Topologicheskie vektornye prostranstva, IL, M., 1959

[13] R. J. Aumann, “Integrals of set-valued functions”, J. Math. Anal. Appl., 12:1 (1965), 1–12 | DOI | MR | Zbl

[14] A. A. Tolstonogov, “$L_p$-nepreryvnye selektory nepodvizhnykh tochek mnogoznachnykh otobrazhenii s razlozhimymi znacheniyami. I. Teoremy suschestvovaniya”, Sib. matem. zhurn., 40:3 (1999), 695–709 | MR | Zbl

[15] F. Hiai, H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7:1 (1977), 149–182 | DOI | MR | Zbl

[16] R. Edvards, Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969