Differential Inclusions with Mixed Semicontinuity Properties in a Banach Space
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 48-62
Voir la notice de l'article provenant de la source Math-Net.Ru
A differential inclusion whose right-hand side is the sum of two set-valued mappings in a separable Banach space is considered. The values of the first mapping are bounded and closed but not necessarily convex, and this mapping is Lipschitz continuous in the phase variable. The values of the second one are closed, and this mapping has mixed semicontinuity properties: given any phase point, it either has closed graph and takes a convex value at this point or is lower semicontinuous in its neighborhood. Under additional assumptions related to measurability and growth
conditions, the existence of a solution is proved.
Keywords:
lower and upper semicontinuity, set-valued Nemytskii operator, continuous selector, fixed point.
@article{FAA_2020_54_3_a4,
author = {A. A. Tolstonogov},
title = {Differential {Inclusions} with {Mixed} {Semicontinuity} {Properties} in a {Banach} {Space}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {48--62},
publisher = {mathdoc},
volume = {54},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a4/}
}
TY - JOUR AU - A. A. Tolstonogov TI - Differential Inclusions with Mixed Semicontinuity Properties in a Banach Space JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2020 SP - 48 EP - 62 VL - 54 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a4/ LA - ru ID - FAA_2020_54_3_a4 ER -
A. A. Tolstonogov. Differential Inclusions with Mixed Semicontinuity Properties in a Banach Space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 48-62. http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a4/