Characters of the Infinite Symmetric Inverse Semigroup
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 38-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete description of indecomposable characters of the infinite symmetric inverse semigroup is given. The method essentially uses the decomposition of the elements of this semigroup into a product of independent quasi-cycles and the multiplicativity theorem. Realizations of all factor representations of finite type are constructed.
Keywords: factor representation, character, inverse symmetric semigroup, multiplicativity.
@article{FAA_2020_54_3_a3,
     author = {N. I. Nessonov},
     title = {Characters of the {Infinite} {Symmetric} {Inverse} {Semigroup}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {38--47},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a3/}
}
TY  - JOUR
AU  - N. I. Nessonov
TI  - Characters of the Infinite Symmetric Inverse Semigroup
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 38
EP  - 47
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a3/
LA  - ru
ID  - FAA_2020_54_3_a3
ER  - 
%0 Journal Article
%A N. I. Nessonov
%T Characters of the Infinite Symmetric Inverse Semigroup
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 38-47
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a3/
%G ru
%F FAA_2020_54_3_a3
N. I. Nessonov. Characters of the Infinite Symmetric Inverse Semigroup. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 38-47. http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a3/

[1] A. M. Vershik, P. P. Nikitin, “Opisanie kharakterov i faktorpredstavlenii beskonechnoi simmetricheskoi inversnoi polugruppy”, Funkts. analiz i ego pril., 45:1 (2011), 16–30 | DOI | MR | Zbl

[2] A. Yu. Okunkov, “Teorema Toma i predstavleniya beskonechnoi bisemmitricheskoi gruppy”, Funkts. analiz i ego pril., 28:2 (1994), 31–40 | MR | Zbl

[3] A. Yu. Okunkov, “O predstavleniyakh beskonechnoi simmetricheskoi gruppy”, Zap. nauchn. sem. POMI, 240 (1997), 166–228 ; arXiv: 9803037 | Zbl

[4] E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen symmetrischen Gruppe”, Math. Z., 85:1 (1964), 40–61 | DOI | MR | Zbl

[5] W. D. Munn, “The characters of the symmetric inverse semigroup”, Proc. Cambridge Philos. Soc., 53:1 (1957), 13–18 | DOI | MR | Zbl

[6] N. I. Nessonov, “Polnaya klassifikatsiya predstavlenii $GL(\infty)$, soderzhaschikh edinichnoe predstavlenie unitarnoi podgruppy”, Matem. sb., 130(172):2(6) (1986), 131–150 | Zbl

[7] J. East, “Generators and relations for partition monoids and algebras”, J. Algebra, 339 (2011), 1–26 | DOI | MR | Zbl

[8] G. I. Olshanskii, “Unitarnye predstavleniya $(G,K)$-par, svyazannykh s beskonechnoi simmetricheskoi gruppoi $S(\infty)$”, Algebra i analiz, 1:4 (1989), 178–210

[9] L. M. Popova, “Opredelyayuschie sootnosheniya nekotorykh polgurupp chastichnykh preobrazovanii konechnogo mnozhestva”, Uch. zap. Leningr. gos. ped. in-ta im. A. I. Gertsena, 218 (1961), 191–212 | Zbl

[10] L. Solomon, “Representations of the rook monoid”, J. Algebra, 256:2 (2002), 309–342 | DOI | MR | Zbl

[11] R. T. Powers, “Representations of uniformly hyperfinite algebras and their associated von Neumann rings”, Ann. of Math., 2nd Ser., 86:1 (1967), 138–171 | DOI | MR | Zbl

[12] D. Voiculescu, “Representations factorielles de type II${}_1$ de $U(\infty)$”, J. Math. Pures Appl., 55:1 (1976), 1–20 | MR | Zbl

[13] A. Wassermann, Automorphic actions of compact groups on operator algebras, Phd thesis, University of Pennsylvania, 1981 | MR