Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2020_54_3_a2, author = {E. V. Glukhov and O. I. Mokhov}, title = {On algebraic-geometry methods for constructing submanifolds with flat normal bundle and holonomic net of curvature lines}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {26--37}, publisher = {mathdoc}, volume = {54}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a2/} }
TY - JOUR AU - E. V. Glukhov AU - O. I. Mokhov TI - On algebraic-geometry methods for constructing submanifolds with flat normal bundle and holonomic net of curvature lines JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2020 SP - 26 EP - 37 VL - 54 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a2/ LA - ru ID - FAA_2020_54_3_a2 ER -
%0 Journal Article %A E. V. Glukhov %A O. I. Mokhov %T On algebraic-geometry methods for constructing submanifolds with flat normal bundle and holonomic net of curvature lines %J Funkcionalʹnyj analiz i ego priloženiâ %D 2020 %P 26-37 %V 54 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a2/ %G ru %F FAA_2020_54_3_a2
E. V. Glukhov; O. I. Mokhov. On algebraic-geometry methods for constructing submanifolds with flat normal bundle and holonomic net of curvature lines. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 26-37. http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a2/
[1] I. M. Krichever, “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. analiz i ego pril., 31:1 (1997), 32–50 | DOI | MR | Zbl
[2] S. P. Tsarev, “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | MR | Zbl
[3] G. Darboux, Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910
[4] B. A. Dubrovin, S. P. Novikov, “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270:4 (1983), 781–785 | MR | Zbl
[5] O. I. Mokhov, E. V. Ferapontov, “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s metrikami postoyannoi krivizny”, UMN, 45:3(273) (1990), 191–192 | MR | Zbl
[6] E. V. Ferapontov, “Differentsialnaya geometriya nelokalnykh gamiltonovykh operatorov gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 25:3 (1991), 37–49 | MR | Zbl
[7] V. E. Zakharov, “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl
[8] V. E. Zakharov, “Application of inverse scattering method to problems of differential geometry”, Contemp. Math., 301 (2002), 15–34 | DOI | MR | Zbl
[9] O. I. Mokhov, “Soglasovannye i pochti soglasovannye metriki”, UMN, 55:4 (2000), 217–218 | DOI | MR | Zbl
[10] O. I. Mokhov, “Soglasovannye i pochti soglasovannye psevdorimanovy metriki”, Funkts. analiz i ego pril., 35:2 (2001), 24–36 | DOI | MR | Zbl
[11] O. I. Mokhov, “Pary Laksa dlya uravnenii, opisyvayuschikh soglasovannye nelokalnye skobki Puassona gidrodinamicheskogo tipa, i integriruemye reduktsii uravnenii Lame”, TMF, 138:2 (2004), 283–296 | DOI | MR | Zbl
[12] O. I. Mokhov, “Puchki soglasovannykh metrik i integriruemye sistemy”, UMN, 72:5 (2017), 113–164 | DOI | MR | Zbl
[13] A. E. Mironov, I. A. Taimanov, “Ortogonalnye krivolineinye sistemy koordinat, otvechayuschie singulyarnym spektralnym krivym”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Tr. MIAN, 255, Nauka, MAIK «Nauka/Interperiodika», M., 2006, 180–196
[14] D. A. Berdinskii, I. P. Rybnikov, “Ob ortogonalnykh krivolineinykh sistemakh koordinat v prostranstvakh postoyannoi krivizny”, Sib. matem. zhurn., 52:3 (2011), 502–511 | MR | Zbl
[15] O. A. Bogoyavlenskaya, “Ob odnom klasse konechnozonnykh krivolineinykh ortogonalnykh koordinat”, Sib. elektron. matem. izv., 12 (2015), 947–954 | MR | Zbl