On algebraic-geometry methods for constructing submanifolds with flat normal bundle and holonomic net of curvature lines
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 26-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose a generalization of Krichever's algebraic-geometric construction of orthogonal coordinate systems in a flat space. In the theory of integrable systems of hydrodynamic type a fundamental role is also played by orthogonal coordinates in some special nonflat spaces. The most important class of such spaces is given by metrics of submanifolds in flat spaces that have flat normal bundle and holonomic net of curvature lines, which defines orthogonal coordinates on the submanifold. We propose a method for constructing such submanifolds from algebraic-geometric data. Explicit examples are presented.
Keywords: submanifold with flat normal bundle, orthogonal coordinates, algebraic-geometric data, holonomic net of curvature lines, diagonal metric with diagonal curvature.
@article{FAA_2020_54_3_a2,
     author = {E. V. Glukhov and O. I. Mokhov},
     title = {On algebraic-geometry methods for constructing submanifolds with flat normal bundle and holonomic net of curvature lines},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {26--37},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a2/}
}
TY  - JOUR
AU  - E. V. Glukhov
AU  - O. I. Mokhov
TI  - On algebraic-geometry methods for constructing submanifolds with flat normal bundle and holonomic net of curvature lines
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 26
EP  - 37
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a2/
LA  - ru
ID  - FAA_2020_54_3_a2
ER  - 
%0 Journal Article
%A E. V. Glukhov
%A O. I. Mokhov
%T On algebraic-geometry methods for constructing submanifolds with flat normal bundle and holonomic net of curvature lines
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 26-37
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a2/
%G ru
%F FAA_2020_54_3_a2
E. V. Glukhov; O. I. Mokhov. On algebraic-geometry methods for constructing submanifolds with flat normal bundle and holonomic net of curvature lines. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 3, pp. 26-37. http://geodesic.mathdoc.fr/item/FAA_2020_54_3_a2/

[1] I. M. Krichever, “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. analiz i ego pril., 31:1 (1997), 32–50 | DOI | MR | Zbl

[2] S. P. Tsarev, “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | MR | Zbl

[3] G. Darboux, Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, Paris, 1910

[4] B. A. Dubrovin, S. P. Novikov, “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, Dokl. AN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[5] O. I. Mokhov, E. V. Ferapontov, “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s metrikami postoyannoi krivizny”, UMN, 45:3(273) (1990), 191–192 | MR | Zbl

[6] E. V. Ferapontov, “Differentsialnaya geometriya nelokalnykh gamiltonovykh operatorov gidrodinamicheskogo tipa”, Funkts. analiz i ego pril., 25:3 (1991), 37–49 | MR | Zbl

[7] V. E. Zakharov, “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl

[8] V. E. Zakharov, “Application of inverse scattering method to problems of differential geometry”, Contemp. Math., 301 (2002), 15–34 | DOI | MR | Zbl

[9] O. I. Mokhov, “Soglasovannye i pochti soglasovannye metriki”, UMN, 55:4 (2000), 217–218 | DOI | MR | Zbl

[10] O. I. Mokhov, “Soglasovannye i pochti soglasovannye psevdorimanovy metriki”, Funkts. analiz i ego pril., 35:2 (2001), 24–36 | DOI | MR | Zbl

[11] O. I. Mokhov, “Pary Laksa dlya uravnenii, opisyvayuschikh soglasovannye nelokalnye skobki Puassona gidrodinamicheskogo tipa, i integriruemye reduktsii uravnenii Lame”, TMF, 138:2 (2004), 283–296 | DOI | MR | Zbl

[12] O. I. Mokhov, “Puchki soglasovannykh metrik i integriruemye sistemy”, UMN, 72:5 (2017), 113–164 | DOI | MR | Zbl

[13] A. E. Mironov, I. A. Taimanov, “Ortogonalnye krivolineinye sistemy koordinat, otvechayuschie singulyarnym spektralnym krivym”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Tr. MIAN, 255, Nauka, MAIK «Nauka/Interperiodika», M., 2006, 180–196

[14] D. A. Berdinskii, I. P. Rybnikov, “Ob ortogonalnykh krivolineinykh sistemakh koordinat v prostranstvakh postoyannoi krivizny”, Sib. matem. zhurn., 52:3 (2011), 502–511 | MR | Zbl

[15] O. A. Bogoyavlenskaya, “Ob odnom klasse konechnozonnykh krivolineinykh ortogonalnykh koordinat”, Sib. elektron. matem. izv., 12 (2015), 947–954 | MR | Zbl