Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2020_54_2_a3, author = {I. Kachkovskii and N. D. Filonov}, title = {Absolute continuity of the spectrum of the periodic {Schr\"odinger} operator in a cylinder with {Robin} boundary condition}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {48--57}, publisher = {mathdoc}, volume = {54}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a3/} }
TY - JOUR AU - I. Kachkovskii AU - N. D. Filonov TI - Absolute continuity of the spectrum of the periodic Schr\"odinger operator in a cylinder with Robin boundary condition JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2020 SP - 48 EP - 57 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a3/ LA - ru ID - FAA_2020_54_2_a3 ER -
%0 Journal Article %A I. Kachkovskii %A N. D. Filonov %T Absolute continuity of the spectrum of the periodic Schr\"odinger operator in a cylinder with Robin boundary condition %J Funkcionalʹnyj analiz i ego priloženiâ %D 2020 %P 48-57 %V 54 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a3/ %G ru %F FAA_2020_54_2_a3
I. Kachkovskii; N. D. Filonov. Absolute continuity of the spectrum of the periodic Schr\"odinger operator in a cylinder with Robin boundary condition. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 2, pp. 48-57. http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a3/
[1] M. Sh. Birman, T. A. Suslina, “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | Zbl
[2] M. D. Blair, “$L^q$ bounds on restrictions of spectral clusters to submanifolds for low regularity metrics”, Anal. PDE, 6:6 (2013), 1263–1288 | DOI | MR | Zbl
[3] L. I. Danilov, “On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator”, J. Phys. A: Math. Theor., 42:27 (2009), 275204 | DOI | MR | Zbl
[4] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR
[5] I. Kachkovskii, “Otsutstvie sobstvennykh znachenii u periodicheskogo operatora Shredingera s singulyarnym potentsialom v pryamougolnom tsilindre”, Funkts. analiz i ego pril., 47:2 (2013), 27–37 | DOI | MR
[6] I. V. Kachkovskii, Otsutstvie sobstvennykh znachenii v spektre nekotorykh operatorov Shredingera s periodicheskimi koeffitsientami, Diss. kand. fiz.-mat. nauk, POMI RAN, 2013
[7] I. V. Kachkovskii, N. D. Filonov, “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Shredingera v mnogomernom tsilindre”, Algebra i analiz, 21:1 (2009), 133–152 | MR
[8] I. V. Kachkovskii, N. D. Filonov, “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Shredingera v sloe i v gladkom tsilindre”, Zap. nauch. sem. POMI, 385 (2010), 69–82
[9] P. Kuchment, Floquet theory for partial differential equations, Birkhauser Verlag, Basel, 1993 | MR | Zbl
[10] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Mir, M., 1982 | MR
[11] H. F. Smith, C. D. Sogge, “On the $L_p$ norm of spectral clusters for compact manifolds with boundary”, Acta Math., 198:1 (2007), 107–153 | DOI | MR | Zbl
[12] T. A. Suslina, “On the absence of eigenvalues of a periodic matrix Schrödinger operator in a layer”, Russ. J. Math. Phys., 8:4 (2001), 463–486 | MR | Zbl
[13] L. Thomas, “Time dependent approach to scattering from impurities in a crystal”, Comm. Math. Phys., 33 (1973), 335–343 | DOI | MR
[14] Z. Shen, “On absolute continuity of the periodic Schrödinger operators”, Intern. Math. Res. Notes, 2001, no. 1, 1–31 | DOI | MR | Zbl