Absolute continuity of the spectrum of the periodic Schr\"odinger operator in a cylinder with Robin boundary condition
Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 2, pp. 48-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2020_54_2_a3,
     author = {I. Kachkovskii and N. D. Filonov},
     title = {Absolute continuity of the spectrum of the periodic {Schr\"odinger} operator in a cylinder with {Robin} boundary condition},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {48--57},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a3/}
}
TY  - JOUR
AU  - I. Kachkovskii
AU  - N. D. Filonov
TI  - Absolute continuity of the spectrum of the periodic Schr\"odinger operator in a cylinder with Robin boundary condition
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2020
SP  - 48
EP  - 57
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a3/
LA  - ru
ID  - FAA_2020_54_2_a3
ER  - 
%0 Journal Article
%A I. Kachkovskii
%A N. D. Filonov
%T Absolute continuity of the spectrum of the periodic Schr\"odinger operator in a cylinder with Robin boundary condition
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2020
%P 48-57
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a3/
%G ru
%F FAA_2020_54_2_a3
I. Kachkovskii; N. D. Filonov. Absolute continuity of the spectrum of the periodic Schr\"odinger operator in a cylinder with Robin boundary condition. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 2, pp. 48-57. http://geodesic.mathdoc.fr/item/FAA_2020_54_2_a3/

[1] M. Sh. Birman, T. A. Suslina, “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | Zbl

[2] M. D. Blair, “$L^q$ bounds on restrictions of spectral clusters to submanifolds for low regularity metrics”, Anal. PDE, 6:6 (2013), 1263–1288 | DOI | MR | Zbl

[3] L. I. Danilov, “On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator”, J. Phys. A: Math. Theor., 42:27 (2009), 275204 | DOI | MR | Zbl

[4] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[5] I. Kachkovskii, “Otsutstvie sobstvennykh znachenii u periodicheskogo operatora Shredingera s singulyarnym potentsialom v pryamougolnom tsilindre”, Funkts. analiz i ego pril., 47:2 (2013), 27–37 | DOI | MR

[6] I. V. Kachkovskii, Otsutstvie sobstvennykh znachenii v spektre nekotorykh operatorov Shredingera s periodicheskimi koeffitsientami, Diss. kand. fiz.-mat. nauk, POMI RAN, 2013

[7] I. V. Kachkovskii, N. D. Filonov, “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Shredingera v mnogomernom tsilindre”, Algebra i analiz, 21:1 (2009), 133–152 | MR

[8] I. V. Kachkovskii, N. D. Filonov, “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Shredingera v sloe i v gladkom tsilindre”, Zap. nauch. sem. POMI, 385 (2010), 69–82

[9] P. Kuchment, Floquet theory for partial differential equations, Birkhauser Verlag, Basel, 1993 | MR | Zbl

[10] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Mir, M., 1982 | MR

[11] H. F. Smith, C. D. Sogge, “On the $L_p$ norm of spectral clusters for compact manifolds with boundary”, Acta Math., 198:1 (2007), 107–153 | DOI | MR | Zbl

[12] T. A. Suslina, “On the absence of eigenvalues of a periodic matrix Schrödinger operator in a layer”, Russ. J. Math. Phys., 8:4 (2001), 463–486 | MR | Zbl

[13] L. Thomas, “Time dependent approach to scattering from impurities in a crystal”, Comm. Math. Phys., 33 (1973), 335–343 | DOI | MR

[14] Z. Shen, “On absolute continuity of the periodic Schrödinger operators”, Intern. Math. Res. Notes, 2001, no. 1, 1–31 | DOI | MR | Zbl