Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2020_54_1_a9, author = {N. N. Senik}, title = {On homogenization for locally periodic elliptic and parabolic operators}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {87--92}, publisher = {mathdoc}, volume = {54}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a9/} }
N. N. Senik. On homogenization for locally periodic elliptic and parabolic operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 54 (2020) no. 1, pp. 87-92. http://geodesic.mathdoc.fr/item/FAA_2020_54_1_a9/
[1] V. V. Zhikov, S. E. Pastukhova, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl
[2] V. V. Zhikov, S. E. Pastukhova, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl
[3] G. Griso, Anal. Appl., 4:1 (2006), 61–79 | DOI | MR | Zbl
[4] M. A. Pakhnin, T. A. Suslina, Algebra i analiz, 24:6 (2012), 139–177 | MR
[5] T. A. Suslina, Mathematika, 59:2 (2013), 463–476 | DOI | MR | Zbl
[6] C. E. Kenig, F. Lin, Zh. Shen, Arch. Ration. Mech. Anal., 203:3 (2012), 1009–1036 | DOI | MR | Zbl
[7] T. A. Suslina, Algebra i analiz, 27:4 (2015), 87–166
[8] Yu. M. Meshkova, T. A. Suslina, Funkts. analiz i ego pril., 49:1 (2015), 88–93 | DOI | MR | Zbl
[9] Yu. M. Meshkova, T. A. Suslina, Appl. Anal., 95:8 (2016), 1736–1775 | DOI | MR | Zbl
[10] Yu. M. Meshkova, T. A. Suslina, Funkts. analiz i ego pril., 51:3 (2017), 87–93 | DOI | MR | Zbl
[11] Yu. M. Meshkova, T. A. Suslina, Algebra i analiz, 29:6 (2017), 99–158 | MR
[12] Yu. M. Meshkova, T. A. Suslina, arXiv: 1702.00550
[13] S. E. Pastukhova, R. N. Tikhomirov, Dokl. RAN, 415:3 (2007), 304–309 | Zbl
[14] S. E. Pastukhova, R. N. Tikhomirov, Dokl. RAN, 428:2 (2009), 166–170 | Zbl
[15] N. N. Senik, arXiv: 1703.02023
[16] N. N. Senik, Funkts. analiz i ego pril., 51:2 (2017), 92–96 | DOI | MR | Zbl