On attainability of the best constant in fractional Hardy--Sobolev inequalities involving the spectral Dirichlet Laplacian
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 4, pp. 93-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2019_53_4_a9,
     author = {N. S. Ustinov},
     title = {On attainability of the best constant in fractional {Hardy--Sobolev} inequalities involving the spectral {Dirichlet} {Laplacian}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {93--98},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a9/}
}
TY  - JOUR
AU  - N. S. Ustinov
TI  - On attainability of the best constant in fractional Hardy--Sobolev inequalities involving the spectral Dirichlet Laplacian
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 93
EP  - 98
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a9/
LA  - ru
ID  - FAA_2019_53_4_a9
ER  - 
%0 Journal Article
%A N. S. Ustinov
%T On attainability of the best constant in fractional Hardy--Sobolev inequalities involving the spectral Dirichlet Laplacian
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 93-98
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a9/
%G ru
%F FAA_2019_53_4_a9
N. S. Ustinov. On attainability of the best constant in fractional Hardy--Sobolev inequalities involving the spectral Dirichlet Laplacian. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 4, pp. 93-98. http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a9/

[1] L. Caffarelli, L. Silvestre, Comm. Partial Differential Equations, 32:7–9 (2007), 1245–1260 | DOI | MR | Zbl

[2] A. Capella, J. Dávila, L. Dupaigne, Y. Sire, Comm. Partial Differential Equations, 36:8 (2011), 1353–1384 | DOI | MR | Zbl

[3] A. Cotsiolis, N. K. Tavoularis, J. Math. Anal. Appl., 295:1 (2004), 225–236 | DOI | MR | Zbl

[4] H. Egnell, Trans. Amer. Math. Soc., 330:1 (1992), 191–201 | DOI | MR | Zbl

[5] N. Ghoussoub, F. Robert, Geom. Funct. Anal., 16:6 (2006), 1201–1245 | DOI | MR | Zbl

[6] I. W. Herbst, Comm. Math. Phys., 53:3 (1977), 285–294 | DOI | MR | Zbl

[7] P.-L. Lions, Ann. Inst. H. Poincaré, Anal. Nonlin., 1 (1984), 109–145, 223–283 | DOI | MR | Zbl

[8] P.-L. Lions, Rev. Mat. Iberoamericana, 1 (1985), 45–121, 145–201 | DOI | MR | Zbl

[9] R. Musina, A. I. Nazarov, Nonlin. Analysis, Theory Methods Appl., 178 (2019), 32–40 | DOI | MR | Zbl

[10] R. Musina, A. I. Nazarov, Comm. Partial Differential Equations, 39:9 (2014), 1780–1790 | DOI | MR | Zbl

[11] R. Musina, A. I. Nazarov, ESAIM: Control. Optim. Calc. Var., 22:3 (2016), 832–841 | DOI | MR | Zbl

[12] R. Musina, A. I. Nazarov, Nonlin. Analysis, Theory Methods Appl., 121 (2015), 123–129 | DOI | MR | Zbl

[13] R. Musina, A. I. Nazarov, Adv. Calc. Var., 2018

[14] P. R. Stinga, J. L. Torrea, Comm. Partial Differential Equations, 35:11 (2010), 2092–2122 | DOI | MR | Zbl

[15] J. Yang, Nonlin. Analysis, Theory Methods Appl., 119 (2015), 179–185 | DOI | MR | Zbl

[16] A. V. Demyanov, A. I. Nazarov, Zap. nauchn. sem. POMI, 336 (2006), 25–45 | Zbl

[17] V. P. Ilin, Matem. sb., 54(96):3 (1961), 331–380 | Zbl

[18] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, izd. 2, Nauka, M., 1973 | MR

[19] A. I. Nazarov, Problemy matematicheskogo analiza (mezhvuz. sb.), no. 31, Tamara Rozhkovskaya, Novosibirsk, 2005, 39–46