Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2019_53_4_a6, author = {T. A. Grigor'ev and M. L. Nazarov}, title = {An analogue of the {Perelomov--Popov} formula}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {79--84}, publisher = {mathdoc}, volume = {53}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a6/} }
T. A. Grigor'ev; M. L. Nazarov. An analogue of the Perelomov--Popov formula. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 4, pp. 79-84. http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a6/
[1] J. Brundan, A. Kleshchev, J. Algebra, 260:1 (2003), 64–98 | DOI | MR | Zbl
[2] S. Cheng, W. Wang, Dualities and Representations of Lie Superalgebras, Amer. Math. Soc., Providence, RI, 2013 | MR
[3] D. Leites, A. Sergeev, Supersymmetries and Quantum Symmetries, Proc. Intern. workshop, Izdat. otdel Ob'edinennogo instituta yadernykh issledovanii, Dubna, 2000, 409–411
[4] M. Nazarov, A. Sergeev, Studies in Lie Theory, Birkhaüser, Boston, 2006, 417–441 | DOI | MR | Zbl
[5] I. B. Penkov, Funkts. analiz i ego pril., 20:1 (1986), 37–45 | MR | Zbl
[6] A. M. Perelomov, V. S. Popov, Izv. AN SSSR. ser. matem., 32:6 (1968), 1368–1390 | Zbl
[7] A. Sergeev, Lett. Math. Phys., 7:3 (1983), 177–179 | DOI | MR | Zbl