Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2019_53_4_a3, author = {V. G. Osmolovskii}, title = {Behavior of the solutions for one-sides varittional problems in two-phase continuum mechanics for a big temperature}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {38--51}, publisher = {mathdoc}, volume = {53}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a3/} }
TY - JOUR AU - V. G. Osmolovskii TI - Behavior of the solutions for one-sides varittional problems in two-phase continuum mechanics for a big temperature JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2019 SP - 38 EP - 51 VL - 53 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a3/ LA - ru ID - FAA_2019_53_4_a3 ER -
%0 Journal Article %A V. G. Osmolovskii %T Behavior of the solutions for one-sides varittional problems in two-phase continuum mechanics for a big temperature %J Funkcionalʹnyj analiz i ego priloženiâ %D 2019 %P 38-51 %V 53 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a3/ %G ru %F FAA_2019_53_4_a3
V. G. Osmolovskii. Behavior of the solutions for one-sides varittional problems in two-phase continuum mechanics for a big temperature. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 4, pp. 38-51. http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a3/
[1] E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing, River Edge, 2003 | MR | Zbl
[2] V. G. Osmolovskii, “Matematicheskie voprosy teorii fazovykh perekhodov v mekhanike sploshnykh sred”, Algebra i analiz, 29:5 (2017), 111–178
[3] M. A. Grinfeld, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990
[4] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974
[5] R. Temam, Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991
[6] G. Dyuvo, Zh-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980
[7] V. G. Osmolovskii, “Boundary value problems with free surfaces in the theory of phase transitions”, Differential Equations, 53:13 (2017), 1734–1763 | DOI | MR | Zbl
[8] L. K. Evans, Metody slaboi skhodimosti dlya nelineinykh uravnenii s chastnymi proizvodnymi, Tamara Rozhkovskaya, Novosibirsk, 2006
[9] V. G. Osmolovskii, “Ob'emnaya dolya odnoi iz faz v sostoyanii ravnovesiya dvukhfazovoi uprugoi sredy”, Zap. nauchn. semin. POMI, 459 (2017), 66–82
[10] V. G. Osmolovskii, “Minimiziruyuschie posledovatelnosti i ravnovesnaya energiya dlya variatsionnoi zadachi teorii uprugosti dvukhfazovykh sred”, Problemy matematicheskogo analiza (mezhvuz. sb.), no. 95, Tamara Rozhkovskaya, Novosibirsk, 2018, 51–60