Behavior of the solutions for one-sides varittional problems in two-phase continuum mechanics for a big temperature
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 4, pp. 38-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2019_53_4_a3,
     author = {V. G. Osmolovskii},
     title = {Behavior of the solutions for one-sides varittional problems in two-phase continuum mechanics for a big temperature},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {38--51},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a3/}
}
TY  - JOUR
AU  - V. G. Osmolovskii
TI  - Behavior of the solutions for one-sides varittional problems in two-phase continuum mechanics for a big temperature
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 38
EP  - 51
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a3/
LA  - ru
ID  - FAA_2019_53_4_a3
ER  - 
%0 Journal Article
%A V. G. Osmolovskii
%T Behavior of the solutions for one-sides varittional problems in two-phase continuum mechanics for a big temperature
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 38-51
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a3/
%G ru
%F FAA_2019_53_4_a3
V. G. Osmolovskii. Behavior of the solutions for one-sides varittional problems in two-phase continuum mechanics for a big temperature. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 4, pp. 38-51. http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a3/

[1] E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing, River Edge, 2003 | MR | Zbl

[2] V. G. Osmolovskii, “Matematicheskie voprosy teorii fazovykh perekhodov v mekhanike sploshnykh sred”, Algebra i analiz, 29:5 (2017), 111–178

[3] M. A. Grinfeld, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990

[4] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[5] R. Temam, Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991

[6] G. Dyuvo, Zh-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980

[7] V. G. Osmolovskii, “Boundary value problems with free surfaces in the theory of phase transitions”, Differential Equations, 53:13 (2017), 1734–1763 | DOI | MR | Zbl

[8] L. K. Evans, Metody slaboi skhodimosti dlya nelineinykh uravnenii s chastnymi proizvodnymi, Tamara Rozhkovskaya, Novosibirsk, 2006

[9] V. G. Osmolovskii, “Ob'emnaya dolya odnoi iz faz v sostoyanii ravnovesiya dvukhfazovoi uprugoi sredy”, Zap. nauchn. semin. POMI, 459 (2017), 66–82

[10] V. G. Osmolovskii, “Minimiziruyuschie posledovatelnosti i ravnovesnaya energiya dlya variatsionnoi zadachi teorii uprugosti dvukhfazovykh sred”, Problemy matematicheskogo analiza (mezhvuz. sb.), no. 95, Tamara Rozhkovskaya, Novosibirsk, 2018, 51–60