Invariants of framed graphs and the Kadomtsev--Petviashvili hierarchy
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 4, pp. 14-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2019_53_4_a1,
     author = {E. S. Krasil'nikov},
     title = {Invariants of framed graphs and the {Kadomtsev--Petviashvili} hierarchy},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {14--26},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a1/}
}
TY  - JOUR
AU  - E. S. Krasil'nikov
TI  - Invariants of framed graphs and the Kadomtsev--Petviashvili hierarchy
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 14
EP  - 26
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a1/
LA  - ru
ID  - FAA_2019_53_4_a1
ER  - 
%0 Journal Article
%A E. S. Krasil'nikov
%T Invariants of framed graphs and the Kadomtsev--Petviashvili hierarchy
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 14-26
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a1/
%G ru
%F FAA_2019_53_4_a1
E. S. Krasil'nikov. Invariants of framed graphs and the Kadomtsev--Petviashvili hierarchy. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 4, pp. 14-26. http://geodesic.mathdoc.fr/item/FAA_2019_53_4_a1/

[1] M. Aguiar, N. Bergeron, F. Sottile, “Combinatorial Hopf algebras and generalized Dehn–Sommerville relations”, Compositio Math., 142 (2006), 1–30 | DOI | MR | Zbl

[2] S. Chmutov, M. Kazarian, S. Lando, Polynomial graph invariants and the KP hierarchy, arXiv: 1803.09800 | MR

[3] M. Dudina, V. Zhukov, An extension of Stanley's chromatic symmetric function to binary delta-matroids, arXiv: 1809.03431

[4] S. K. Lando, A. K. Zvonkin, Graphs on Surfaces and Their Applications, v. 2, Encyclopaedia of Mathematical Sciences, 141, Low-Dimensional Topology, Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl

[5] S. Lando, V. Zhukov, “Delta-Matroids and Vassiliev invariants”, Moscow Math. J., 17:4 (2017), 741–755 | DOI | MR | Zbl

[6] M. E. Kazaryan, S. K. Lando, “Kombinatornye resheniya integriruemykh ierarkhii”, UMN, 70:3 (2015), 77–108 | DOI | MR

[7] M. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifold”, North-Holland Math. Studies, 81, Elsevier, Amsterdam, 1983, 259–271 | DOI | MR

[8] S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev Knot Invariants, Cambridge University Press, Cambridge, 2012 | MR | Zbl

[9] R. P. Stanley, “A symmetric function generalization of the chromatic polynomial of a graph”, Adv. Math., 111:1 (1995), 166–194 | DOI | MR | Zbl

[10] S. K. Lando, “$J$-invarianty ornamentov i osnaschennye khordovye diagrammy”, Funkts. analiz i ego pril., 40:1 (2006), 1–13 | DOI | MR | Zbl

[11] S. A. Joni, G.-C. Rota, “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61:2 (1979), 93–139 | DOI | MR | Zbl

[12] J. W. Milnor, J. C. Moore, “On the structure of Hopf algebras”, Ann. of Math., 81:2 (1965), 211–264 | DOI | MR | Zbl

[13] S. V. Chmutov, S. V. Duzhin, S. K. Lando, “Vassiliev knot invariants III. Forest algebra and weighted graphs”, Advances in Soviet Math., 21, Amer. Math. Soc., Providence, RI, 1994, 135–145 | MR | Zbl