Karisti inequality and $\alpha$-contractive mappings
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 3, pp. 84-88
Voir la notice de l'article provenant de la source Math-Net.Ru
The article considers a new Caristi-like inequality and
proves some development of the Caristi theorem on fixed points of mappings of
complete metric spaces (both in the single-valued and multi-valued case).
Based on the obtained theorem, we study mappings of complete metric spaces
that are contractive with respect to a certain $\alpha$ function of 2 vector arguments
$\alpha$-contractive mappings). This function may not be a metric or even a continuous function. Proved theorems are generalizations of the Banach principle of contraction maps of and the Nadler theorem.
Keywords:
fixed point, multivalued mapping, metric space, contraction mappings.
@article{FAA_2019_53_3_a6,
author = {B. D. Gel'man},
title = {Karisti inequality and $\alpha$-contractive mappings},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {84--88},
publisher = {mathdoc},
volume = {53},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a6/}
}
B. D. Gel'man. Karisti inequality and $\alpha$-contractive mappings. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 3, pp. 84-88. http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a6/