Karisti inequality and $\alpha$-contractive mappings
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 3, pp. 84-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers a new Caristi-like inequality and proves some development of the Caristi theorem on fixed points of mappings of complete metric spaces (both in the single-valued and multi-valued case). Based on the obtained theorem, we study mappings of complete metric spaces that are contractive with respect to a certain $\alpha$ function of 2 vector arguments $\alpha$-contractive mappings). This function may not be a metric or even a continuous function. Proved theorems are generalizations of the Banach principle of contraction maps of and the Nadler theorem.
Keywords: fixed point, multivalued mapping, metric space, contraction mappings.
@article{FAA_2019_53_3_a6,
     author = {B. D. Gel'man},
     title = {Karisti inequality and $\alpha$-contractive mappings},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {84--88},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a6/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - Karisti inequality and $\alpha$-contractive mappings
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 84
EP  - 88
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a6/
LA  - ru
ID  - FAA_2019_53_3_a6
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T Karisti inequality and $\alpha$-contractive mappings
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 84-88
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a6/
%G ru
%F FAA_2019_53_3_a6
B. D. Gel'man. Karisti inequality and $\alpha$-contractive mappings. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 3, pp. 84-88. http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a6/

[1] A. A. Ivanov, Issledovaniya po topologii, II, Nauka, Leningradskoe otdelenie, Leningrad, 1975, 5–102

[2] J. Dugundji, A. Granas, Fixed point theory, PWN, Warszawa, 1982 | MR | Zbl

[3] P. V. Semenov, Funkts. analiz i ego pril., 36:2 (2002), 89–92 | DOI | MR | Zbl

[4] A. I. Perov, Funkts. analiz i ego pril., 44:1 (2010), 83–87 | DOI | MR | Zbl

[5] J. Caristi, Trans. Amer. Math. Soc., 215 (1976), 241–251 | DOI | MR | Zbl

[6] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga (URSS), M., 2005 | MR

[7] Zh.-P. Oben, Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 | MR

[8] S. B. Nadler, Pasif. J. Math., 30:2 (1969), 475–488 | DOI | Zbl

[9] V. Nemytskii, UMN, 1936, no. 1, 141–174 | Zbl