Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2019_53_3_a4, author = {D. A. Popov}, title = {On relationships between the discrete and resonance spectra for the {Laplace} operator on a non-compact hyperbolic {Riemann} surface}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {61--78}, publisher = {mathdoc}, volume = {53}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a4/} }
TY - JOUR AU - D. A. Popov TI - On relationships between the discrete and resonance spectra for the Laplace operator on a non-compact hyperbolic Riemann surface JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2019 SP - 61 EP - 78 VL - 53 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a4/ LA - ru ID - FAA_2019_53_3_a4 ER -
%0 Journal Article %A D. A. Popov %T On relationships between the discrete and resonance spectra for the Laplace operator on a non-compact hyperbolic Riemann surface %J Funkcionalʹnyj analiz i ego priloženiâ %D 2019 %P 61-78 %V 53 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a4/ %G ru %F FAA_2019_53_3_a4
D. A. Popov. On relationships between the discrete and resonance spectra for the Laplace operator on a non-compact hyperbolic Riemann surface. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 3, pp. 61-78. http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a4/
[1] A. B. Venkov, “Spaktralnaya teoriya avtomorfnykh funktsii”, Trudy MIAN, 153, 1981 | Zbl
[2] P. Sarnak, “Spectra of hyperbolic surfaces”, Bull. Amer. Math. Soc., 40:4 (2003), 441–478 | DOI | MR | Zbl
[3] A. Selberg, Harmonic Analysis, Teil 2, Vorlesungniederschrift, Göttingen, 1954
[4] A. B. Venkov, “On essentially cuspidal noncongruence subgroups of $\operatorname{PSL}(2,\mathbb{Z})$”, J. Funct. Analys., 92:1 (1990), 1–7 | DOI | MR | Zbl
[5] J. M. Deshouillers, H. Iwaniec, R. S. Phillips, P. Sarnak, “Maass cusp forms”, Proc. Nat. Acad. Sci. USA, 82:11 (1985), 3533–3534 | DOI | MR | Zbl
[6] R. S. Phillips, P. Sarnak, “On cusp forms for co-finite subgroups of $\operatorname{PSL}(2,\mathbb{R})$”, Invent. Math., 80:2 (1985), 339–364 | DOI | MR | Zbl
[7] S. A. Wolpert, “Spectral limits for hyperbolic surfaces I, II”, Invent. Math., 108:1 (1992), 67–89, 91–129 | DOI | MR | Zbl
[8] S. A. Wolpert, “Disappearance of cups forms in special families”, Ann. of Math., 139:2 (1994), 239–291 | DOI | MR | Zbl
[9] W. Luo, “Nonvanishing of $L$-values and the Weil law”, Ann. of Math., 154:2 (2001), 477–502 | DOI | MR | Zbl
[10] D. A. Popov, “O formule Selberga dlya strogo giperbolicheskikh grupp”, Funkts. analiz i ego pril., 47:4 (2013), 53–66 | DOI | MR | Zbl
[11] D. A. Popov, Selberg formula for cofinite groups and the Roelke conjecture, arXiv: 1705.05612v4
[12] A. B. Venkov, “Ob ostatochnom chlene v asimptoticheskoi formule Veilya–Selberga”, Zap. nauchn. sem. LOMI, 91 (1979), 5–24 | Zbl
[13] A. B. Venkov, “Spektralnaya teoriya avtomorfnykh funktsii, dzeta-funktsiya Selberga i nekotorye problemy analiticheskoi teorii chisel i matematicheskoi fiziki”, UMN, 34:3 (1979), 69–135 | MR | Zbl
[14] D. A. Hejhal, “The Selberg trace formula and Rieman zeta function”, Duke Math. J., 43:3 (1976), 441–481 | DOI | MR
[15] D. A. Hejhal, The Selberg Trace Formula for $\operatorname{PSL}(2,\mathbb{R})$, V. 1, v. 1, Lect. Notes in Math., 548, Springer-Verlag, Berlin–New York, 1976 | DOI | MR
[16] D. A. Hejhal, The Selberg Trace Formula for $\operatorname{PSL}(2,\mathbb{R})$, v. 2, Lect. Notes in Math., 1001, Springer-Verlag, Berlin, 1983 | DOI | MR
[17] H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms, Revista Matemática Iberoamericana, Madrid, 1995 | MR | Zbl
[18] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, ryadov i proizvedenii, BKhV-Peterburg, Sankt-Peterburg, 2011 | MR
[19] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1966
[20] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979
[21] D. A. Popov, “Diskretnyi spektr operatora Laplasa na fundamentalnoi oblasti modulyarnoi gruppy i psi-funktsiya Chebysheva”, Izv. RAN. Ser. matem., 83:5 (2019) | DOI
[22] U. Abikof, Veschestvenno-analiticheskaya teoriya prostranstv Teikhmyullera, Mir, M., 1985