On relationships between the discrete and resonance spectra for the Laplace operator on a non-compact hyperbolic Riemann surface
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 3, pp. 61-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2019_53_3_a4,
     author = {D. A. Popov},
     title = {On relationships between the discrete  and resonance spectra for the {Laplace} operator on a non-compact hyperbolic {Riemann} surface},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {61--78},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a4/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - On relationships between the discrete  and resonance spectra for the Laplace operator on a non-compact hyperbolic Riemann surface
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 61
EP  - 78
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a4/
LA  - ru
ID  - FAA_2019_53_3_a4
ER  - 
%0 Journal Article
%A D. A. Popov
%T On relationships between the discrete  and resonance spectra for the Laplace operator on a non-compact hyperbolic Riemann surface
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 61-78
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a4/
%G ru
%F FAA_2019_53_3_a4
D. A. Popov. On relationships between the discrete  and resonance spectra for the Laplace operator on a non-compact hyperbolic Riemann surface. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 3, pp. 61-78. http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a4/

[1] A. B. Venkov, “Spaktralnaya teoriya avtomorfnykh funktsii”, Trudy MIAN, 153, 1981 | Zbl

[2] P. Sarnak, “Spectra of hyperbolic surfaces”, Bull. Amer. Math. Soc., 40:4 (2003), 441–478 | DOI | MR | Zbl

[3] A. Selberg, Harmonic Analysis, Teil 2, Vorlesungniederschrift, Göttingen, 1954

[4] A. B. Venkov, “On essentially cuspidal noncongruence subgroups of $\operatorname{PSL}(2,\mathbb{Z})$”, J. Funct. Analys., 92:1 (1990), 1–7 | DOI | MR | Zbl

[5] J. M. Deshouillers, H. Iwaniec, R. S. Phillips, P. Sarnak, “Maass cusp forms”, Proc. Nat. Acad. Sci. USA, 82:11 (1985), 3533–3534 | DOI | MR | Zbl

[6] R. S. Phillips, P. Sarnak, “On cusp forms for co-finite subgroups of $\operatorname{PSL}(2,\mathbb{R})$”, Invent. Math., 80:2 (1985), 339–364 | DOI | MR | Zbl

[7] S. A. Wolpert, “Spectral limits for hyperbolic surfaces I, II”, Invent. Math., 108:1 (1992), 67–89, 91–129 | DOI | MR | Zbl

[8] S. A. Wolpert, “Disappearance of cups forms in special families”, Ann. of Math., 139:2 (1994), 239–291 | DOI | MR | Zbl

[9] W. Luo, “Nonvanishing of $L$-values and the Weil law”, Ann. of Math., 154:2 (2001), 477–502 | DOI | MR | Zbl

[10] D. A. Popov, “O formule Selberga dlya strogo giperbolicheskikh grupp”, Funkts. analiz i ego pril., 47:4 (2013), 53–66 | DOI | MR | Zbl

[11] D. A. Popov, Selberg formula for cofinite groups and the Roelke conjecture, arXiv: 1705.05612v4

[12] A. B. Venkov, “Ob ostatochnom chlene v asimptoticheskoi formule Veilya–Selberga”, Zap. nauchn. sem. LOMI, 91 (1979), 5–24 | Zbl

[13] A. B. Venkov, “Spektralnaya teoriya avtomorfnykh funktsii, dzeta-funktsiya Selberga i nekotorye problemy analiticheskoi teorii chisel i matematicheskoi fiziki”, UMN, 34:3 (1979), 69–135 | MR | Zbl

[14] D. A. Hejhal, “The Selberg trace formula and Rieman zeta function”, Duke Math. J., 43:3 (1976), 441–481 | DOI | MR

[15] D. A. Hejhal, The Selberg Trace Formula for $\operatorname{PSL}(2,\mathbb{R})$, V. 1, v. 1, Lect. Notes in Math., 548, Springer-Verlag, Berlin–New York, 1976 | DOI | MR

[16] D. A. Hejhal, The Selberg Trace Formula for $\operatorname{PSL}(2,\mathbb{R})$, v. 2, Lect. Notes in Math., 1001, Springer-Verlag, Berlin, 1983 | DOI | MR

[17] H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms, Revista Matemática Iberoamericana, Madrid, 1995 | MR | Zbl

[18] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, ryadov i proizvedenii, BKhV-Peterburg, Sankt-Peterburg, 2011 | MR

[19] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1966

[20] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979

[21] D. A. Popov, “Diskretnyi spektr operatora Laplasa na fundamentalnoi oblasti modulyarnoi gruppy i psi-funktsiya Chebysheva”, Izv. RAN. Ser. matem., 83:5 (2019) | DOI

[22] U. Abikof, Veschestvenno-analiticheskaya teoriya prostranstv Teikhmyullera, Mir, M., 1985