Projection constants of a class of codimension-two subspaces in the space $l_\infty^{2n}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 3, pp. 33-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2019_53_3_a2,
     author = {O. M. Martynov},
     title = {Projection constants of a class of codimension-two subspaces in the space $l_\infty^{2n}$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a2/}
}
TY  - JOUR
AU  - O. M. Martynov
TI  - Projection constants of a class of codimension-two subspaces in the space $l_\infty^{2n}$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 33
EP  - 44
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a2/
LA  - ru
ID  - FAA_2019_53_3_a2
ER  - 
%0 Journal Article
%A O. M. Martynov
%T Projection constants of a class of codimension-two subspaces in the space $l_\infty^{2n}$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 33-44
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a2/
%G ru
%F FAA_2019_53_3_a2
O. M. Martynov. Projection constants of a class of codimension-two subspaces in the space $l_\infty^{2n}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 3, pp. 33-44. http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a2/

[1] J. Blätter, E. W. Cheney, “Minimal projections on hyperplanes in sequence spaces”, Ann. Math. Pura Appl., 101 (1974), 215–227 | DOI | MR | Zbl

[2] F. Bohnenblust, “Convex regions and projections in Minkowski spaces”, Ann. of Math., 39:2 (1938), 301–308 | DOI | MR

[3] H. König, D. R. Lewis, P.-K. Lin, “Finite dimensional projection constants”, Stud. Math., 75:3 (1983), 341–358 | DOI | MR | Zbl

[4] G. Levicki, Best approximation in spaces of bounded linear operators, Dissert. Math., CCCXXX, 1994 | MR

[5] G. Levicki, A. Micek, “Equality of two strongly unique minimal projection constants”, J. Approx. Theory, 162:12 (2010), 2278–2289 | DOI | MR

[6] V. V. Lokotż, “On a class of minimal projections in finite-dimensional spaces”, Optimization, 29:4 (1994), 311–317 | DOI | MR | Zbl

[7] V. V. Lokot, “Konstanty silnoi edinstvennosti minimalnykh proektsii na giperploskosti v prostranstve $l_\infty^{n}$ ($n\ge 3$)”, Matem. zametki, 72:5 (2002), 723–728 | DOI | MR | Zbl

[8] V. V. Lokot, O. M. Martynov, Proektsionnye konstanty, MGGU, Murmansk, 2013

[9] V. V. Lokot, O. M. Martynov, “O nekotorykh konstantakh silnoi edinstvennosti”, Differentsialnye uravneniya i protsessy upravleniya, 1 (2018), 35–53 ; http://diffjournal.spbu.ru/RU/numbers/2018.1/article.1.2.html | MR | Zbl

[10] O. M. Martinov, “Constants of strong unicity of minimal projections onto some two-dimensional subspaces of $l_\infty^{4}$”, J. Approx. Theory, 118:2 (2002), 175–187 | DOI | MR | Zbl

[11] O. M. Martynov, Nekotorye svoistva operatorov proektirovaniya v banakhovykh prostranstvakh, Dissertatsiya k.f.-m.n., RGPU im. A. I. Gertsena, SPb, 2002

[12] V. P. Odinets, M. Ya. Yakubson, Proektory i bazisy v normirovannykh prostranstvakh, Editorial URSS, M., 2004

[13] W. Odyniec, M. Prophet, The strong unicity constant and its applications, Banach Center Publications, 79, Polish Acad. Sci. Inst. Math., Warsaw, 2007, 167–172 | DOI | MR

[14] W. Odyniec, M. Prophet, “A lower bound of the strongly unique minimal projection constant of $l_\infty^{n}$ ($n\ge 3$)”, J. Approx. Theory, 145:1 (2007), 111–121 | DOI | MR | Zbl