Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2019_53_3_a1, author = {E. L. Korotyaev}, title = {Inverse problems for finite vector-valued {Jacobi} operators}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {23--32}, publisher = {mathdoc}, volume = {53}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a1/} }
E. L. Korotyaev. Inverse problems for finite vector-valued Jacobi operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 3, pp. 23-32. http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a1/
[1] A. I. Aptekarev, E. M. Nikishin, “Zadacha rasseyaniya dlya diskretnogo operatora Shturma–Liuvillya”, Matem. sb., 121(163):3(7) (1983), 327–358 | MR | Zbl
[2] D. Chelkak, E. Korotyaev, “Parametrization of the isospectral set for the vector-valued Sturm–Liouville problem”, J. Funct. Anal., 241:1 (2006), 359–373 | DOI | MR | Zbl
[3] D. Chelkak, E. Korotyaev, “Weyl–Titchmarsh functions of vector-valued Sturm-Liouville operators on the unit interval”, J. Func. Anal., 257:5 (2009), 1546–1588 | DOI | MR | Zbl
[4] S. Clark, F. Gesztesy, W. Renger, “Trace formulas and Borg-type theorems for matrix-valued Jacobi and Dirac finite difference operators”, J. Differential Equations, 219:1 (2005), 144–182 | DOI | MR | Zbl
[5] A. Duran, P. Lopez-Rodriguez, “The matrix moment problem”, Margarita mathematica, Univ. La Rioja, Logroño, 2001, 333–348 | MR | Zbl
[6] F. Gesztesy, B. Simon, “$m$-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices”, J. Anal. Math., 73 (1997), 267–297 | DOI | MR | Zbl
[7] E. Korotyaev, “Gap-length mapping for periodic Jacobi matrices”, Russ. J. Math. Phys., 13:1 (2006), 64–69 | DOI | MR | Zbl
[8] E. Korotyaev, A. Kutsenko, “Lyapunov functions of periodic matrix-valued Jacobi operators”, Spectral theory of differential operators, Amer. Math. Soc. Transl. Ser. 2, 225, Amer. Math. Soc., Providence, RI, 2008, 117–131 | MR | Zbl
[9] E. Korotyaev, A. Kutsenko, “Borg-type uniqueness theorems for periodic Jacobi operators with matrix-valued coefficients”, Proc. Amer. Math. Soc., 137:6 (2009), 1989–1996 | DOI | MR | Zbl
[10] M. G. Krein, “Beskonechnye $J$-matritsy i matrichnaya problema momentov”, Dokl. AN SSSR (N.S.), 69 (1949), 125–128 | MR | Zbl
[11] B. Simon, Orthogonal polynomials on the unit circle. Part 1: Classical theory, AMS Colloquium Publications, 54, Part 1, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[12] H. O. Yakhlef, F. Marcellan, “Orthogonal matrix polynomials, connection between recurrences on the unit circle and on a finite interval”, Approximation, optimization and mathematical economics (Pointe-a-Pitre, 1999), Physica, Heidelberg, 2001, 369–382 | DOI | MR | Zbl