Ultraelliptic integrals and two-dimensional sigma-functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 3, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2019_53_3_a0,
     author = {T. Ayano and V. M. Buchstaber},
     title = {Ultraelliptic integrals and two-dimensional sigma-functions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a0/}
}
TY  - JOUR
AU  - T. Ayano
AU  - V. M. Buchstaber
TI  - Ultraelliptic integrals and two-dimensional sigma-functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 3
EP  - 22
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a0/
LA  - ru
ID  - FAA_2019_53_3_a0
ER  - 
%0 Journal Article
%A T. Ayano
%A V. M. Buchstaber
%T Ultraelliptic integrals and two-dimensional sigma-functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 3-22
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a0/
%G ru
%F FAA_2019_53_3_a0
T. Ayano; V. M. Buchstaber. Ultraelliptic integrals and two-dimensional sigma-functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 3, pp. 3-22. http://geodesic.mathdoc.fr/item/FAA_2019_53_3_a0/

[1] M. Adler, J. Moser, “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61:1 (1978), 1–30 | DOI | MR | Zbl

[2] T. Ayano, V. M. Buchstaber, “Construction of two parametric deformation of KdV-hierarchy and solution in terms of meromorphic functions on the sigma divisor of a hyperelliptic curve of genus 3”, SIGMA, 15 (2019), 032 ; arXiv: 1811.07138 | MR | Zbl

[3] H. F. Baker, An Introduction to the Theory of Multiply-Periodic Functions, Univ. Press, Cambridge, 1907 | MR | Zbl

[4] A. B. Bogatyrev, “Konformnoe otobrazhenie pryamougolnykh semiugolnikov”, Matem. sb., 203:12 (2012), 35–56 | DOI | Zbl

[5] A. B. Bogatyrev, O. A. Grigorżev, “Conformal mapping of rectangular heptagons II”, Comput. Methods Funct. Theory, 18:2 (2018), 221–238 | DOI | MR | Zbl

[6] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Kleinian functions, hyperelliptic Jacobians and applications”, Reviews in Mathematics and Math. Physics, part 2, v. 10, Gordon and Breach, London, 1997, 3–120 | MR

[7] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry and Topology: On the Crossroad, Amer. Math. Soc. Trans. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 1–33 | MR

[8] V. M. Bukhshtaber, D. V. Leikin, V. Z. Enolskii, “Ratsionalnye analogi abelevykh funktsii”, Funkts. analiz i ego prilozh., 33:2 (1999), 1–15 | DOI | MR | Zbl

[9] V. M. Buchstaber, V. Z. Enolski, D. V. Leykin, Multi-dimensional sigma-functions, arXiv: 1208.0990

[10] V. M. Bukhshtaber, “Polinomialnye dinamicheskie sistemy i uravnenie Kortevega-de Friza”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki. II, Sbornik statei, Trudy MIAN, 294, MAIK, M., 2016, 191–215 | DOI

[11] V. M. Buchstaber, V. Z. Enolski, D. V. Leykin, “Sigma-functions: old and new results”, Integrable Systems and Algebraic Geometry, LMS Lecture Notes Series, 2, Cambridge Univ. Press, Cambridge, 2019 ; arXiv: 1810.11079 | MR

[12] V. Z. Enolski, E. Hackmann, V. Kagramanova, J. Kunz, C. Lämmerzahl, “Inversion of hyperelliptic integrals of arbitrary genus with application to particle motion in general relativity”, J. Geom. Phys., 61:5 (2011), 899–921 | DOI | MR | Zbl

[13] V. Enolski, B. Hartmann, V. Kagramanova, J. Kunz, C. Lämmerzahl, P. Sirimachan, “Inversion of a general hyperelliptic integral and particle motion in Hořava-Lifshitz black hole space-times”, J. Math. Phys., 53:1 (2012), 012504 | DOI | MR | Zbl

[14] V. Z. Enolskii, M. Pronine, P. H. Richter, “Double pendulum and $\theta$-divisor”, J. Nonlinear Sci., 13:2 (2003), 157–174 | DOI | MR | Zbl

[15] J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Math., 352, Springer–Verlag, Berlin–New York, 1973 | DOI | MR | Zbl

[16] D. Grant, “A generalization of Jacobi's derivative formula to dimension two”, J. Reine Angew. Math., 392 (1988), 125–136 | MR | Zbl

[17] D. Grant, “A generalization of a formula of Eisenstein”, Proc. London Math. Soc., 62:1 (1991), 121–132 | DOI | MR | Zbl

[18] E. Hackmann, V. Kagramanova, J. Kunz, C. Lämmerzahl, “Analytic solutions of the geodesic equation in higher dimensional static spherically symmetric spacetimes”, Phys. Rev. D, 78 (2008), 124018 | DOI | MR

[19] E. Hackmann, V. Kagramanova, J. Kunz, C. Lämmerzahl, “Analytic solutions of the geodesic equation in axially symmetric space-times”, EPL (Europhysics Letters), 88:3 (2009), 30008 | DOI

[20] E. Hackmann, C. Lämmerzahl, “Complete analytic solution of the geodesic equation in Schwarzschild-(anti-)de Sitter spacetimes”, Phys. Rev. Lett., 100 (2008), 171101 | DOI | MR | Zbl

[21] E. Hackmann, C. Lämmerzahl, “Geodesic equation in Schwarzschild-(anti-)de Sitter space-times: analytical solutions and applications”, Phys. Rev. D, 78 (2008), 024035 | DOI | MR

[22] E. Hackmann, C. Lämmerzahl, V. Kagramanova, J. Kunz, “Analytical solution of the geodesic equation in Kerr-(anti-) de Sitter space-times”, Phys. Rev. D, 81 (2010), 044020 | DOI | MR

[23] J. Jorgenson, “On directional derivatives of the theta function along its divisor”, Israel J. Math., 77:3 (1992), 273–284 | DOI | MR | Zbl

[24] A. I. Markushevich, Vvedenie v klassicheskuyu teoriyu abelevykh funktsii, Nauka, M., 1979

[25] S. Matsutani, “Recursion relation of hyperelliptic psi-functions of genus two”, Integral Transforms Spec. Funct., 14:6 (2003), 517–527 | DOI | MR | Zbl

[26] A. Nakayashiki, “On algebraic expressions of sigma functions for $(n,s)$ curves”, Asian J. Math., 14:2 (2010), 175–212 ; arXiv: 0803.2083 | DOI | MR | Zbl

[27] Y. Onishi, “Complex multiplication formulae for hyperelliptic curves of genus three”, Tokyo J. Math., 21:2 (1998), 381–431 | DOI | MR | Zbl

[28] Y. Onishi, “Determinant expressions for Abelian functions in genus two”, Glasg. Math. J., 44:3 (2002), 353–364 | DOI | MR | Zbl