Topologically Flat Banach Modules
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 2, pp. 32-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2019_53_2_a2,
     author = {N. T. Nemesh},
     title = {Topologically {Flat} {Banach} {Modules}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {32--41},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_2_a2/}
}
TY  - JOUR
AU  - N. T. Nemesh
TI  - Topologically Flat Banach Modules
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 32
EP  - 41
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_2_a2/
LA  - ru
ID  - FAA_2019_53_2_a2
ER  - 
%0 Journal Article
%A N. T. Nemesh
%T Topologically Flat Banach Modules
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 32-41
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_2_a2/
%G ru
%F FAA_2019_53_2_a2
N. T. Nemesh. Topologically Flat Banach Modules. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 2, pp. 32-41. http://geodesic.mathdoc.fr/item/FAA_2019_53_2_a2/

[1] H. G. Dales, A. T.-M. Lau, D. Strauss, “Second duals of measure algebras”, Diss. Math., 481 (2012) | MR | Zbl

[2] K. R. Davidson, $C^*$-Algebras by Example, Fields Institute Monographs, 6, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[3] A. Defant, K. Floret, Tensor Norms and Operator Ideals, North Holland Mathematical Studies, 176, North Holland Publishing Co., Amsterdam, 1993 | MR | Zbl

[4] A. W. M. Graven, “Injective and projective Banach modules”, Indag. Math. (Proceedings), 82:3 (1979), 253–272 | DOI | MR

[5] A. Grothendieck, “Une caractérisation vectorielle-métrique des espaces $L_1$”, Canad. J. Math, 7 (1955), 552–561 | DOI | MR | Zbl

[6] A. Ya. Khelemskii, “O gomologicheskoi razmernosti normirovannykh modulei nad banakhovymi algebrami”, Matem. sb., 81:3 (1970), 430–444 | Zbl

[7] A. Ya. Khelemskii, Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR

[8] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989

[9] E. Kaniuth, A Course in Commutative Banach Algebras, Graduate Texts in Mathematics, 246, Springer-Verlag, New York, 2009 | DOI | MR | Zbl

[10] J. Lindenstrauss, A. Pelczynski, “Absolutely summing operators in $\mathcal{L}_p$-spaces and their applications”, Studia Math., 29 (1968), 275–326 | DOI | MR | Zbl

[11] Yu. I. Lyubich, O. A. Shatalova, “Isometric embeddings of finite-dimensional $\ell_p$-spaces over the quaternions”, Algebra i analiz, 16:1 (2004), 15–32 | MR | Zbl

[12] N. T. Nemesh, “Geometriya proektivnykh, in'ektivnykh i ploskikh banakhovykh modulei”, Fundament. i prikl. matem., 21:3 (2016), 161–184 | MR

[13] J.-P. Pier, Amenable Locally Compact Groups, John Wiley Sons, New York, 1984 | MR

[14] H. P. Rosenthal, Projections onto Translation-Invariant Subspaces of $L_p(G)$, Mem. Amer. Math. Soc., 63, 1966 | MR

[15] V. Runde, “The amenability constant of the Fourier algebra”, Proc. Amer. Math. Soc., 134:5 (2006), 1473–1481 | DOI | MR | Zbl

[16] S. Sakai, “Weakly compact operators on operator algebras”, Pacific J. Math., 14 (1964), 659–664 | DOI | MR | Zbl

[17] C. P. Stegall, J. R. Retherford, “Fully nuclear and completely nuclear operators with applications to $\mathcal{L}_1$-and $\mathcal{L}_\infty$-spaces”, Trans. Amer. Math. Soc., 163 (1972), 457–492 | MR

[18] M. C. White, “Injective modules for uniform algebras”, Proc. London Math. Soc., 73:1 (1996), 155–184 | DOI | MR | Zbl

[19] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991 | MR | Zbl