@article{FAA_2019_53_2_a0,
author = {M. I. Belishev and S. A. Siminov},
title = {The {Wave} {Model} of {Metric} {Spaces}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {3--10},
year = {2019},
volume = {53},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_2_a0/}
}
M. I. Belishev; S. A. Siminov. The Wave Model of Metric Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 2, pp. 3-10. http://geodesic.mathdoc.fr/item/FAA_2019_53_2_a0/
[1] M. I. Belishev, “A unitary invariant of a semi-bounded operator in reconstruction of manifolds”, J. Operator Theory, 69:2 (2013), 299–326 | DOI | MR | Zbl
[2] M. I. Belishev, “Granichnoe upravlenie i tomografiya rimanovykh mnogoobrazii (BC-metod)”, UMN, 72:4 (2017), 3–66 | DOI | MR | Zbl
[3] M. I. Belishev, S. A. Simonov, “Volnovaya model operatora Shturma–Liuvillya na poluosi”, Algebra i analiz, 29:2 (2017), 3–33
[4] G. Birkgof, Teoriya reshetok, Nauka, M., 1984
[5] B. Z. Vulikh, Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatlit, M., 1961
[6] D. Yu. Burago, Yu. D. Burago, S. V. Ivanov, Kurs metricheskoi geometrii, In-t. kompyuter. issled., M., Izhevsk, 2004
[7] S. A. Simonov, “Wave model of the regular Sturm Liouville operator”, 2017 Days on Diffraction (DD), St. Petersburg, 2017, 300–303, arXiv: 1801.02011 | DOI | MR