On homogenization of the stationary periodic Maxwell system in a bounded domain
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 88-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2019_53_1_a8,
     author = {T. A. Suslina},
     title = {On homogenization of the stationary periodic {Maxwell} system in a bounded domain},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--92},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a8/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - On homogenization of the stationary periodic Maxwell system in a bounded domain
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 88
EP  - 92
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a8/
LA  - ru
ID  - FAA_2019_53_1_a8
ER  - 
%0 Journal Article
%A T. A. Suslina
%T On homogenization of the stationary periodic Maxwell system in a bounded domain
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 88-92
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a8/
%G ru
%F FAA_2019_53_1_a8
T. A. Suslina. On homogenization of the stationary periodic Maxwell system in a bounded domain. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 88-92. http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a8/

[1] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Studies in Math. and Appl., 5, North-Holland, Amsterdam–New York, 1978 | MR | Zbl

[2] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984

[3] E. Sanches-Palensia, Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[4] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Nauka, M., 1993

[5] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 15:5 (2003), 1–108

[6] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 18:6 (2006), 1–130

[7] M. Sh. Birman, T. A. Suslina, Funkts. analiz i ego pril., 41:2 (2007), 3–23 | DOI | MR | Zbl

[8] T. A. Suslina, Algebra i analiz, 16:5 (2004), 162–244

[9] T. A. Suslina, Algebra i analiz, 19:3 (2007), 183–235

[10] T. A. Suslina, Algebra i analiz, 30:3 (2018), 169–209

[11] M. Sh. Birman, M. Z. Solomyak, UMN, 42:6 (1987), 61–76 | MR | Zbl

[12] N. D. Filonov, Algebra i analiz, 9:2 (1997), 241–255 | MR | Zbl

[13] T. A. Suslina, Homogenization of the stationary Maxwell system in a bounded domain, https://arxiv.org/abs/1810.12294 | MR