Two-dimensional periodic Schr\"odinger operators integrable on an energy ``eigenlevel''
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 31-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2019_53_1_a3,
     author = {A. V. Il'ina and I. M. Krichever and N. A. Nekrasov},
     title = {Two-dimensional periodic {Schr\"odinger} operators integrable on an energy ``eigenlevel''},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {31--48},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a3/}
}
TY  - JOUR
AU  - A. V. Il'ina
AU  - I. M. Krichever
AU  - N. A. Nekrasov
TI  - Two-dimensional periodic Schr\"odinger operators integrable on an energy ``eigenlevel''
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 31
EP  - 48
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a3/
LA  - ru
ID  - FAA_2019_53_1_a3
ER  - 
%0 Journal Article
%A A. V. Il'ina
%A I. M. Krichever
%A N. A. Nekrasov
%T Two-dimensional periodic Schr\"odinger operators integrable on an energy ``eigenlevel''
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 31-48
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a3/
%G ru
%F FAA_2019_53_1_a3
A. V. Il'ina; I. M. Krichever; N. A. Nekrasov. Two-dimensional periodic Schr\"odinger operators integrable on an energy ``eigenlevel''. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 31-48. http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a3/

[1] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Uravnenie Shredingera v periodicheskom pole i rimanovy poverkhnosti”, Dokl. AN SSSR, 229:1 (1976), 15–18 | MR | Zbl

[2] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Nelineinye uravneniya tipa Kortevega-de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1(187) (1976), 55–136 | MR | Zbl

[3] I. M. Krichever, “Potentsialy s nulevym koeffitsientom otrazheniya na fone konechnozonnykh”, Funkts. analiz i ego pril., 9:2 (1975), 77–78 | MR | Zbl

[4] I. M. Krichever, “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | MR | Zbl

[5] I. M. Krichever, “Spektralnaya teoriya dvumernykh periodicheskikh operatorov i ee prilozheniya”, UMN, 44:2(266) (1989), 121–184 | MR | Zbl

[6] I. M. Krichever, “Spektralnaya teoriya «konechnozonnykh» nestatsionarnykh operatorov Shredingera. Nestatsionarnaya model Paierlsa”, Funkts. analiz i ego pril., 20:3 (1986), 42–54 | MR | Zbl

[7] S. M. Natanzon, “Nesingulyarnye konechnozonnye dvumernye operatory Shredingera i primiany veschestvennykh krivykh”, Funkts. analiz i ego pril., 22:1 (1988), 79–80 | MR | Zbl

[8] A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye potentsialnye operatory Shredingera. Yavnye formuly i evolyutsionnye uravneniya”, Dokl. AN SSSR, 279:1 (1984), 20–24 | MR | Zbl

[9] A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye operatory Shredingera. Potentsialnye operatory”, Dokl. AN SSSR, 279:4 (1984), 784–788 | MR | Zbl

[10] I. A. Taimanov, “Dvumernyi operator Diraka i teoriya poverkhnostei”, UMN, 61:1(367) (2006), 85–164 | DOI | MR | Zbl