Directional short-time Fourier transform and quasiasymptotics of distributions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 6-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2019_53_1_a1,
     author = {J. V. Buralieva and K. Saneva and S. Atanasova},
     title = {Directional short-time {Fourier} transform and quasiasymptotics of distributions},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {6--15},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a1/}
}
TY  - JOUR
AU  - J. V. Buralieva
AU  - K. Saneva
AU  - S. Atanasova
TI  - Directional short-time Fourier transform and quasiasymptotics of distributions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2019
SP  - 6
EP  - 15
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a1/
LA  - ru
ID  - FAA_2019_53_1_a1
ER  - 
%0 Journal Article
%A J. V. Buralieva
%A K. Saneva
%A S. Atanasova
%T Directional short-time Fourier transform and quasiasymptotics of distributions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2019
%P 6-15
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a1/
%G ru
%F FAA_2019_53_1_a1
J. V. Buralieva; K. Saneva; S. Atanasova. Directional short-time Fourier transform and quasiasymptotics of distributions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 53 (2019) no. 1, pp. 6-15. http://geodesic.mathdoc.fr/item/FAA_2019_53_1_a1/

[4] H. H. Giv, “Directional short-time Fourier transform”, J. Math. Anal. Appl., 399:1 (2013), 100–107 | DOI | MR | Zbl

[5] K. Hadzi-Velkova Saneva, S. Atanasova, “Directional short-time Fourier transform of distributions”, J. Inequal. Appl., 2016:124 (2016), 1–10 | MR

[6] S. Atanasova, S. Pilipović, K. Saneva, Directional short-time Fourier transform and directional regularity, http://arxiv.org/abs/1707.02831

[7] J. Vindas, S. Pilipović, D. Rakić, “Tauberian theorems for the wavelet transform”, J. Fourier Anal. Appl., 17:1 (2011), 65–95 | DOI | MR | Zbl

[8] K. Saneva, R. Aceska, S. Kostadinova, “Some Abelian and Tauberian results for the short-time Fourier transform”, Novi Sad J. Math., 43:2 (2013), 81–89 | MR | Zbl

[9] S. Kostadinova, S. Pilipović, K. Saneva, J. Vindas, “The ridgelet transform and quasiasymptotic behaviour of distributions”, Pseudodifferential Operatots and Generalized Functions, Oper. Theory Adv. Appl., 245, Birhäuser/Springer, Cham, 2015, 183–195 | MR

[10] S. Kostadinova, S. Pilipović, K. Saneva, J. Vindas, “The short-time Fourier transform of distributions of exponential type and Tauberian theorems for shift-asymptotics”, FILOMAT, 30:11 (2016), 3047–3061 | DOI | MR | Zbl

[11] S. Pilipović, J. Vindas, “Multidimensional Tauberian theorems for vector-valued distributions”, Publ. Inst. Math. (Beograd)(N. S.), 95 (109) (2014), 1–28 | DOI | MR | Zbl

[12] S. Pilipović, B. Stankovic, J. Vindas, Asymptotic behavior of generalized functions, World Scientific Publishing Co. Pte Ltd., Hackensack, NJ, 2012 | MR | Zbl

[13] V. S. Vladimirov, Yu. N. Drozzinov, B. I. Zavialov, Tauberian theorems for generalized functions, Kluwer Academic Piblishers Group, Dordrecht, 1988 | MR | Zbl

[14] F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York–London, 1967 | MR | Zbl

[15] L. Schwartz, “Théorie des distributions á valeurs vectorielles”, Ann. Inst. Fourier (Grenoble), 7 (1957), 1–141 | DOI | MR | Zbl

[16] J. Vindas, “The structure of quasiasymptotics of Schwartz distributions”, Banach Center Publ., 88, 2010, 297–314 | DOI | MR | Zbl