On Some Free Algebras of Automorphic Forms
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 38-61

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for $n=8,9,10$, the natural algebra of automorphic forms of the group $O^+_{2,n}(\mathbb{Z})$ acting on the $n$-dimensional symmetric domain of type IV is free, and the weights of generators are found. This extends results obtained in the author's previous paper for $n\le 7$. On the other hand, as proved in a recent joint paper of the author and O. V. Shvartsman, similar algebras of automorphic forms cannot be free for $n>10$.
Keywords: symmetric domain, automorphic form, reflection group, $K3$-surface, period map.
Mots-clés : moduli space
@article{FAA_2018_52_4_a2,
     author = {\`E. B. Vinberg},
     title = {On {Some} {Free} {Algebras} of {Automorphic} {Forms}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {38--61},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a2/}
}
TY  - JOUR
AU  - È. B. Vinberg
TI  - On Some Free Algebras of Automorphic Forms
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 38
EP  - 61
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a2/
LA  - ru
ID  - FAA_2018_52_4_a2
ER  - 
%0 Journal Article
%A È. B. Vinberg
%T On Some Free Algebras of Automorphic Forms
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 38-61
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a2/
%G ru
%F FAA_2018_52_4_a2
È. B. Vinberg. On Some Free Algebras of Automorphic Forms. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 38-61. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a2/