On Some Free Algebras of Automorphic Forms
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 38-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for $n=8,9,10$, the natural algebra of automorphic forms of the group $O^+_{2,n}(\mathbb{Z})$ acting on the $n$-dimensional symmetric domain of type IV is free, and the weights of generators are found. This extends results obtained in the author's previous paper for $n\le 7$. On the other hand, as proved in a recent joint paper of the author and O. V. Shvartsman, similar algebras of automorphic forms cannot be free for $n>10$.
Keywords: symmetric domain, automorphic form, reflection group, $K3$-surface, period map.
Mots-clés : moduli space
@article{FAA_2018_52_4_a2,
     author = {\`E. B. Vinberg},
     title = {On {Some} {Free} {Algebras} of {Automorphic} {Forms}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {38--61},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a2/}
}
TY  - JOUR
AU  - È. B. Vinberg
TI  - On Some Free Algebras of Automorphic Forms
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 38
EP  - 61
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a2/
LA  - ru
ID  - FAA_2018_52_4_a2
ER  - 
%0 Journal Article
%A È. B. Vinberg
%T On Some Free Algebras of Automorphic Forms
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 38-61
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a2/
%G ru
%F FAA_2018_52_4_a2
È. B. Vinberg. On Some Free Algebras of Automorphic Forms. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 4, pp. 38-61. http://geodesic.mathdoc.fr/item/FAA_2018_52_4_a2/

[1] G. C. Shephard, J. A. Todd, “Finite unitary reflection groups”, Canad. J. Math., 6 (1954), 274–304 | DOI | MR | Zbl

[2] C. Chevalley, “Invariants of finite groups generated by reflections”, Amer. J. Math., 77 (1955), 778–782 | DOI | MR | Zbl

[3] O. V. Shvartsman, “O kotsiklakh grupp kompleksnykh otrazhenii i silnoi odnosvyaznosti faktorprostranstv”, Voprosy teorii grupp i gomologiicheskoi algebry, Yaroslavsk. gos. universitet, Yaroslavl, 1991, 32–39 | Zbl

[4] E. B. Vinberg, V. L. Popov, “Teoriya invariantov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, Algebraicheskaya geometriya–4, 55, VINITI, M., 1989, 137–309

[5] E. B. Vinberg, “Some free algebras of automorphic forms on symmetric domains of type IV”, Transform. Groups, 15:3 (2010), 701–741 | DOI | MR | Zbl

[6] W. L. Baily, A. Borel, “Compactification of arithmetic quotients of bounded symmetric domains”, Ann. of Math. (2), 84 (1966), 442–528 | DOI | MR | Zbl

[7] J. Igusa, “On Siegel modular forms of genus two”, Amer. J. Math., 84 (1962), 175–200 | DOI | MR

[8] E. B. Vinberg, “Ob algebre modulyarnykh form Zigelya roda $2$”, Trudy MMO, 74:1 (2013), 2–17

[9] E. B. Vinberg, O. V. Shvartsman, “Kriterii gladkosti v beskonechnosti arifmeticheskogo faktora truby buduschego”, Funkts. analiz i ego pril., 51:1 (2017), 40–59 | DOI | MR | Zbl

[10] V. V. Nikulin, “Tselochislennye simmetricheskie bilineinye formy i nekotorye ikh geometricheskie prilozheniya”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 111–177 | MR | Zbl

[11] E. B. Vinberg, “O gruppakh edinits nekotorykh kvadratichnykh form”, Matem. sb., 87 (129):1 (1972), 18–36 | Zbl

[12] B. Saint-Donat, “Projective models of K3 surfaces”, Amer. J. Math., 96 (1974), 602–639 | DOI | MR | Zbl

[13] E. B. Vinberg, “The two most algebraic K3 surfaces”, Math. Ann., 265:1 (1983), 1–21 | DOI | MR | Zbl

[14] T. Johnsen, A. L. Knutsen, K3 Projective Models in Scrolls, Lecture Notes in Math., Springer-Verlag, Berlin, 1842 | MR

[15] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, Nauka, M., 1982 | MR

[16] V. S. Kulikov, P. F. Kurchanov, “Kompleksnye algebraicheskie mnogoobraziya: periody integralov i struktury Khodzha”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, Algebraicheskaya geometriya–3, 36, VINITI, M., 1997, 5–231