Stability under Small Hilbert-Schmidt Perturbations for $C^*$-Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 92-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the tracial stability of $C^*$-algebras, which is a general property of stability of relations in a Hilbert–Schmidt-type norm defined by a trace on a $C^*$-algebra. Precise definitions are formulated in terms of tracial ultraproducts. For nuclear $C^*$-algebras, a characterization of matricial tracial stability in terms of approximation of tracial states by traces of finite-dimensional representations is obtained. For the nonnuclear case, new obstructions and counterexamples are constructed in terms of free entropy theory.
Keywords: tracial ultraproduct, tracial stability, tracial norms, almost commuting matrices.
@article{FAA_2018_52_3_a9,
     author = {D. Hadwin and T. V. Shulman},
     title = {Stability under {Small} {Hilbert-Schmidt} {Perturbations} for $C^*${-Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {92--97},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a9/}
}
TY  - JOUR
AU  - D. Hadwin
AU  - T. V. Shulman
TI  - Stability under Small Hilbert-Schmidt Perturbations for $C^*$-Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 92
EP  - 97
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a9/
LA  - ru
ID  - FAA_2018_52_3_a9
ER  - 
%0 Journal Article
%A D. Hadwin
%A T. V. Shulman
%T Stability under Small Hilbert-Schmidt Perturbations for $C^*$-Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 92-97
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a9/
%G ru
%F FAA_2018_52_3_a9
D. Hadwin; T. V. Shulman. Stability under Small Hilbert-Schmidt Perturbations for $C^*$-Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 92-97. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a9/

[1] N. Filonov, I. Kachkovskiy, A Hilbert–Schmidt analog of Huaxin Lin's Theorem, arXiv: 1008.4002

[2] L. Glebsky, Almost commuting matrices with respect to normalized Hilbert–Schmidt norm,, arXiv: 1002.3082

[3] U. Haagerup, S. Thorbjørnsen, Ann. of Math., 162:2 (2005), 711–775 | DOI | MR | Zbl

[4] D. Hadwin, X. Ma, Oper. Matrices, 2:1 (2008), 53–65 | DOI | MR

[5] D. Hadwin, W. Li, Oper. Matrices, 3:1 (2009), 125–143 | DOI | MR | Zbl

[6] D. Hadwin, J. Shen, J. Funct. Anal., 249:1 (2007), 75–91 | DOI | MR | Zbl

[7] D. Hadwin, Operator Algebras and Operator Theory (Shanghai, 1997), Contemp. Math., 228, Amer. Math. Soc., Providence, RI, 1998, 111–131 | DOI | MR | Zbl

[8] P. R. Halmos, Proc. Roy. Soc. Edinburgh Sect. A, 76:1 (1976/77), 67–76 | DOI | MR | Zbl

[9] K. Jung, Math. Ann., 338:1 (2007), 241–248 | DOI | MR | Zbl

[10] Huaxin Lin, Operator Algebra and Their Applications, Filds Inst. Commun., 13, Amer. Math. Soc., Providence, RI, 1997, 235–241 | MR | Zbl

[11] D. H. Hyers, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224 | DOI | MR

[12] S. Sakai, The theory of W*-algebras, Lecture Notes, Yale University, New Haven, 1962

[13] D. Voiculescu, Acta Sci. Math., 45 (1983), 429–431 | MR | Zbl

[14] D. Voiculescu, Invent. Math., 118:3 (1994), 411–440 | DOI | MR | Zbl

[15] D. Voiculescu, Geom. Funct. Anal., 6:1 (1996), 172–199 | DOI | MR | Zbl