Stability under Small Hilbert-Schmidt Perturbations for $C^*$-Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 92-97
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper studies the tracial stability of $C^*$-algebras, which is a general property of stability of relations in a Hilbert–Schmidt-type norm defined by a trace on a $C^*$-algebra. Precise definitions are formulated in terms of tracial ultraproducts. For nuclear $C^*$-algebras, a characterization of matricial tracial stability in terms of approximation of tracial states by traces of finite-dimensional representations is obtained. For the nonnuclear case, new obstructions and counterexamples are constructed in terms of free entropy theory.
Keywords:
tracial ultraproduct, tracial stability, tracial norms, almost commuting matrices.
@article{FAA_2018_52_3_a9,
author = {D. Hadwin and T. V. Shulman},
title = {Stability under {Small} {Hilbert-Schmidt} {Perturbations} for $C^*${-Algebras}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {92--97},
publisher = {mathdoc},
volume = {52},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a9/}
}
TY - JOUR AU - D. Hadwin AU - T. V. Shulman TI - Stability under Small Hilbert-Schmidt Perturbations for $C^*$-Algebras JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2018 SP - 92 EP - 97 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a9/ LA - ru ID - FAA_2018_52_3_a9 ER -
D. Hadwin; T. V. Shulman. Stability under Small Hilbert-Schmidt Perturbations for $C^*$-Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 92-97. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a9/