On Minkowski Sums of Many Small Sets
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 88-91
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that a weakly closed subset of a Banach space is convex if and only if it can be represented as the sum of sets of arbitrarily small diameter.
Keywords:
Minkowski addition, infinite divisibility, weak compactness, convexity.
@article{FAA_2018_52_3_a8,
author = {M. M. Roginskaya and V. S. Shul'man},
title = {On {Minkowski} {Sums} of {Many} {Small} {Sets}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {88--91},
year = {2018},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a8/}
}
M. M. Roginskaya; V. S. Shul'man. On Minkowski Sums of Many Small Sets. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 88-91. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a8/
[1] V. Kreinovich, Reliab. Comput., 1:1 (1995), 33–40 | DOI | MR | Zbl
[2] T. Tao, V. H. Vu, Additive Combinatorics, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[3] J.-M. Deshouillers et al (eds.), Structure Theory of Set Addition, Asterisque, 258, Soc. Math. France, Paris, 1999 | Zbl
[4] M. B. Nathanson, Additive Number Theory. Inverse Problems and Geometry of Sumsets, Springer-Verlag, New York, 1996 | MR | Zbl
[5] D. H. Hyers, Proc. Nat. Acad. Sci USA, 27 (1941), 222–224 | DOI | MR