On an Orthogonality Equation in Normed Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 79-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to give an answer to the question, posed by Alsina, Sikorska, and Tomás, as to whether each norm derivative preserving mapping is necessarily linear.
Keywords: norm derivative, functional equation.
Mots-clés : quotient space
@article{FAA_2018_52_3_a6,
     author = {P. W\'ojcik},
     title = {On an {Orthogonality} {Equation} in {Normed} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {79--83},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a6/}
}
TY  - JOUR
AU  - P. Wójcik
TI  - On an Orthogonality Equation in Normed Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 79
EP  - 83
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a6/
LA  - ru
ID  - FAA_2018_52_3_a6
ER  - 
%0 Journal Article
%A P. Wójcik
%T On an Orthogonality Equation in Normed Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 79-83
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a6/
%G ru
%F FAA_2018_52_3_a6
P. Wójcik. On an Orthogonality Equation in Normed Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 79-83. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a6/

[1] C. Alsina, J. Sikorska, M. S. Tomás, Norm Derivatives and Characterizations of Inner Product Spaces, World Scientific Publishing Co., Hackensack, NJ, 2010 | MR | Zbl

[2] C. Alsina, M. S. Tomás, J. Inst. Math. Comput. Sci. Math. Ser., 4:3 (1991), 411–417 | MR

[3] D. Amir, Characterization of Inner Product Spaces, Birkhäuser, Basel, 1986 | MR

[4] J. Baker, Amer. Math. Monthly, 78 (1971), 655–658 | DOI | MR | Zbl

[5] J. Blatter, J. Approx. Theory, 2:4 (1969), 337–341 | DOI | MR | Zbl

[6] G. Birkhoff, Duke Math. J., 1:2 (1935), 169–172 | DOI | MR

[7] S. Mazur, S. Ulam, C. R. Acad. Sci. Paris, 194 (1932), 946–948

[8] W. Rudin, K. T. Smith, Indagationes Mathematieae (Proceedings), 64 (1961), 97–103 | DOI | Zbl

[9] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR | Zbl