Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2018_52_3_a6, author = {P. W\'ojcik}, title = {On an {Orthogonality} {Equation} in {Normed} {Spaces}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {79--83}, publisher = {mathdoc}, volume = {52}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a6/} }
P. Wójcik. On an Orthogonality Equation in Normed Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 79-83. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a6/
[1] C. Alsina, J. Sikorska, M. S. Tomás, Norm Derivatives and Characterizations of Inner Product Spaces, World Scientific Publishing Co., Hackensack, NJ, 2010 | MR | Zbl
[2] C. Alsina, M. S. Tomás, J. Inst. Math. Comput. Sci. Math. Ser., 4:3 (1991), 411–417 | MR
[3] D. Amir, Characterization of Inner Product Spaces, Birkhäuser, Basel, 1986 | MR
[4] J. Baker, Amer. Math. Monthly, 78 (1971), 655–658 | DOI | MR | Zbl
[5] J. Blatter, J. Approx. Theory, 2:4 (1969), 337–341 | DOI | MR | Zbl
[6] G. Birkhoff, Duke Math. J., 1:2 (1935), 169–172 | DOI | MR
[7] S. Mazur, S. Ulam, C. R. Acad. Sci. Paris, 194 (1932), 946–948
[8] W. Rudin, K. T. Smith, Indagationes Mathematieae (Proceedings), 64 (1961), 97–103 | DOI | Zbl
[9] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR | Zbl