Commuting Differential Operators of Rank 2 with Rational Coefficients
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 53-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we find new pairs of self-adjoint commuting differential operators of rank 2 with rational coefficients and prove that any curve of genus 2 written as a hyperelliptic curve is the spectral curve of a pair of commuting differential operators with rational coefficients. We also study the case where curves of genus 3 are the spectral curves of pairs of commuting differential operators of rank 2 with rational coefficients.
Keywords: integrable systems, commuting differential operators, Weyl algebra, spectral curve.
@article{FAA_2018_52_3_a4,
     author = {V. S. Oganesyan},
     title = {Commuting {Differential} {Operators} of {Rank} 2 with {Rational} {Coefficients}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a4/}
}
TY  - JOUR
AU  - V. S. Oganesyan
TI  - Commuting Differential Operators of Rank 2 with Rational Coefficients
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 53
EP  - 65
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a4/
LA  - ru
ID  - FAA_2018_52_3_a4
ER  - 
%0 Journal Article
%A V. S. Oganesyan
%T Commuting Differential Operators of Rank 2 with Rational Coefficients
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 53-65
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a4/
%G ru
%F FAA_2018_52_3_a4
V. S. Oganesyan. Commuting Differential Operators of Rank 2 with Rational Coefficients. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 53-65. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a4/

[1] J. L. Burchnall, T. W. Chaundy, “Commutative ordinary differential operators”, Proc. London Math. Soc., 21 (1923), 420–440 ; Proc. Royal Soc. London (A), 118 (1928), 557–583 | DOI | MR | Zbl | DOI | Zbl

[2] I. M. Krichever, “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | MR | Zbl

[3] I. M. Krichever, “Kommutativnye koltsa obyknovennykh lineinykh differentsialnykh operatorov”, Funkts. analiz i ego pril., 12:3 (1978), 20–31 | MR | Zbl

[4] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6(216) (1980), 47–68 | MR | Zbl

[5] O. I. Mokhov, “Kommutiruyuschie obyknovennye differentsialnye operatory ranga 3, otvechayuschie ellipticheskoi krivoi”, UMN, 37:4(226) (1982), 169–170 | MR | Zbl

[6] O. I. Mokhov, “Kommutiruyuschie differentsialnye operatory ranga 3 i nelinei-nye uravneniya”, Izv. AN SSSR. Ser. matem., 53:6 (1989), 1291–1315

[7] O. I. Mokhov, “O kommutativnykh podalgebrakh algebr Veilya, svyazannykh s kommutiruyuschimi operatorami proizvolnogo ranga i roda”, Matem. zametki, 94:2 (2013), 314–316 | DOI | Zbl

[8] O. I. Mokhov, “Commuting ordinary differential operators of arbitrary genus and arbitrary rank with polynomial coeffcients”, Amer. Math. Soc. Transl. Ser. 2, 234, Amer. Math. Soc., Providence, RI, 2014, 323–336 | MR | Zbl

[9] A. E. Mironov, “Self-adjoint commuting differential operators”, Invent. Math., 197:2 (2014), 417–431 | DOI | MR | Zbl

[10] A. E. Mironov, “Periodic and rapid decay rank two self-adjoint commuting differential operators”, Amer. Math. Soc. Transl. Ser. 2, 234, Amer. Math. Soc., Providence, RI, 2014, 309–322 | MR

[11] A. E. Mironov, A. B. Zheglov, “Commuting ordinary differential operators with polynomial coefficients and automorphisms of the first Weyl algebra”, Int. Math. Res. Not., 2016:10 (2016), 2974–2993 | DOI | MR | Zbl

[12] J. Dixmier, “Sur les algebres de Weyl”, Bull. Soc. Math. France, 96 (1968), 209–242 | DOI | MR | Zbl

[13] D. Mumford, “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg de Vries equation and related nonlinear equation”, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, 115–153 | MR

[14] V. N. Davletshina, “Kommutiruyuschie differentsialnye operatory ranga dva s trigonometricheskimi koeffitsientami”, Sib. matem. zhurn., 56:3 (2015), 513–519 | MR | Zbl

[15] V. S. Oganesyan, “Kommutiruyuschie differentsialnye operatory ranga 2 s polinomialnymi koeffitsientami”, Funkts. analiz i ego pril., 50:1 (2016), 67–75 | DOI | MR | Zbl

[16] V. S. Oganesyan, “Obschie sobstvennye funktsii kommutiruyuschikh differentsialnykh operatorov ranga 2”, Matem. zametki, 99:2 (2016), 283–287 | DOI | MR | Zbl