Affinity of the Arov Entropy
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 22-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we continue the study of historically the first version of dynamical entropy. This version was suggested in master's thesis by D. Arov and went practically unnoticed. The main result of the paper is that the Arov entropy, like the Kolmogorov–Sinai entropy, has the affine property. This, in particular, allows constructing a variety of dynamical systems where the Arov entropy is not determined by the Kolmogorov-Sinai entropy.
Mots-clés : Lebesgue space automorphism, Bernoulli partition
Keywords: decomposition into ergodic components, automorphism generator, Kolmogorov–Sinai entropy, automorphism entropy with respect to a partition, mean entropy over the elements of a fixed partition.
@article{FAA_2018_52_3_a1,
     author = {B. M. Gurevich},
     title = {Affinity of the {Arov} {Entropy}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {22--31},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a1/}
}
TY  - JOUR
AU  - B. M. Gurevich
TI  - Affinity of the Arov Entropy
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 22
EP  - 31
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a1/
LA  - ru
ID  - FAA_2018_52_3_a1
ER  - 
%0 Journal Article
%A B. M. Gurevich
%T Affinity of the Arov Entropy
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 22-31
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a1/
%G ru
%F FAA_2018_52_3_a1
B. M. Gurevich. Affinity of the Arov Entropy. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 3, pp. 22-31. http://geodesic.mathdoc.fr/item/FAA_2018_52_3_a1/

[1] A. Alpeev, B. Seward, Krieger's finite generator theorem for actions of countable groups III, arXiv: 1705.09707v1 | MR

[2] D. Z. Arov, “K istorii vozniknoveniya ponyatiya $\varepsilon$-entropii avtomorfizma prostranstva Lebega i ponyatiya $(\varepsilon,T)$-entropii dinamicheskoi sistemy s nepreryvnym vremenem”, Zap. nauch. sem. POMI, 436, POMI, SPb, 2015, 76–100

[3] D. Z. Arov, “The influence of V. P. Potapov and M. G. Krein on my scientific work”, Oper. Theory: Adv. Appl., 72, Birkhäuser, Basel, 1994, 1–16 | MR | Zbl

[4] B. M. Gurevich, “K istorii dinamicheskoi entropii: sravnenie dvukh opredelenii”, Zap. nauch. sem. POMI, 436, POMI, SPb, 2015, 101–111

[5] T. Downarowicz, Entropy in Dynamical Systems, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl

[6] J. C. Kieffer, M. Rahe, “Selecting universal partitions in ergodic theory”, Ann. Probab., 9:4 (1981), 705–709 | DOI | MR | Zbl

[7] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[8] V. A. Rokhlin, “Izbrannye voprosy metricheskoi teorii dinamicheskikh sistem”, UMN, 4:2 (1949), 57–128 | MR | Zbl

[9] V. A. Rokhlin, “Lektsii po entropiinoi teorii preobrazovanii s invariantnoi meroi”, UMN, 22:5 (1967), 3–56 | MR | Zbl

[10] Ya. G. Sinai, “O slabom izomorfizme preobrazovanii s invariantnoi meroi”, Matem. sb., 53:1 (1964), 23–42

[11] F. Takens, E. Verbitskiy, “Rényi entropies of aperiodic dynamical systems”, Israel J. Math., 127 (2002), 279–302 | DOI | MR | Zbl

[12] E. Verbitskiy, Generalized Entropies in Dynamical Systems, Thesis, Univ. of Groningen, 2000 | MR