On Fourier Series in Generalized Eigenfunctions of a Discrete Sturm-Liouville Operator
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 90-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

For semicontinuous summation methods generated by $\Lambda=\{\lambda_{n}(h)\}$ ($n=0,1,\dots$; $h>0$) of Fourier series in eigenfunctions of a discrete Sturm–Liouville operator of class $\mathcal{B}$, some results on the uniform a.e. behavior of $\Lambda$-means are obtained. The results are based on strong- and weak-type estimates of maximal functions. As a consequence, some statements on the behavior of the summation methods generated by the exponential means $\lambda_{n}(h)=\exp(-u^{\alpha}(n)h)$ are obtained. An application to a generalized heat equation is given.
Keywords: Fourier series, discrete operator, Sturm–Liouville operator, eigenfunctions, semicontinuous summation methods, generalized heat equation, Jacobi polynomials, Pollaczek polynomials, loaded Gegenbauer polynomials.
Mots-clés : orthogonal polynomials
@article{FAA_2018_52_2_a9,
     author = {B. P. Osilenker},
     title = {On {Fourier} {Series} in {Generalized} {Eigenfunctions} of a {Discrete} {Sturm-Liouville} {Operator}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {90--93},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a9/}
}
TY  - JOUR
AU  - B. P. Osilenker
TI  - On Fourier Series in Generalized Eigenfunctions of a Discrete Sturm-Liouville Operator
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 90
EP  - 93
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a9/
LA  - ru
ID  - FAA_2018_52_2_a9
ER  - 
%0 Journal Article
%A B. P. Osilenker
%T On Fourier Series in Generalized Eigenfunctions of a Discrete Sturm-Liouville Operator
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 90-93
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a9/
%G ru
%F FAA_2018_52_2_a9
B. P. Osilenker. On Fourier Series in Generalized Eigenfunctions of a Discrete Sturm-Liouville Operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 90-93. http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a9/

[1] Yu. M. Berezanskii, Razlozheniya po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[2] A. D. Nakhman, B. P. Osilenker, Mezhdunarodnyi zhurnal eksperimentalnogo obrazovaniya, 2014, no. 3, 75–80

[3] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR

[4] B. P. Osilenker, Izvestiya VUZov, Matematika, 2010, no. 2, 53–65 | Zbl

[5] B. P. Osilenker, A. D. Nakhman, Vestnik MGSU, 2014, no. 10, 54–63

[6] G. Segë, Ortogonalnye mnogochleny, Fizmatlit, M., 1962

[7] S. Bochner, Proc. Conf. Diff. Equation, Maryland, 1955, 23–48

[8] G. Gasper, Ann. of Math., 95:2 (1972), 266–280 | DOI | MR

[9] P. Nevai, Progress in Approximation Theory, Springer-Verlag, New York–Berlin, 1992, 79–104 | DOI | MR | Zbl

[10] P. Nevai, “Orthogonal Polynomials”, Mem. Amer. Math. Soc., 18:213 (1979) | MR

[11] W. Van Assche, Orthogonal Polynomials: Theory and Practice, Kluwer, Dordrecht, 1990, 435–462