On the Hyperbolicity Locus of a Real Curve
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 86-89
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a real algebraic curve in the projective 3-space, its hyperbolicity locus is the set of lines with respect to which the curve is hyperbolic. We give an example of a smooth irreducible curve whose hyperbolicity locus is disconnected but the connected components are not distinguished by the linking numbers with the connected components of the curve.
Keywords:
algebraic curve, algebraic knot.
@article{FAA_2018_52_2_a8,
author = {S. Yu. Orevkov},
title = {On the {Hyperbolicity} {Locus} of a {Real} {Curve}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {86--89},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a8/}
}
S. Yu. Orevkov. On the Hyperbolicity Locus of a Real Curve. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 86-89. http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a8/