On the Hyperbolicity Locus of a Real Curve
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 86-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a real algebraic curve in the projective 3-space, its hyperbolicity locus is the set of lines with respect to which the curve is hyperbolic. We give an example of a smooth irreducible curve whose hyperbolicity locus is disconnected but the connected components are not distinguished by the linking numbers with the connected components of the curve.
Keywords: algebraic curve, algebraic knot.
@article{FAA_2018_52_2_a8,
     author = {S. Yu. Orevkov},
     title = {On the {Hyperbolicity} {Locus} of a {Real} {Curve}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {86--89},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a8/}
}
TY  - JOUR
AU  - S. Yu. Orevkov
TI  - On the Hyperbolicity Locus of a Real Curve
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 86
EP  - 89
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a8/
LA  - ru
ID  - FAA_2018_52_2_a8
ER  - 
%0 Journal Article
%A S. Yu. Orevkov
%T On the Hyperbolicity Locus of a Real Curve
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 86-89
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a8/
%G ru
%F FAA_2018_52_2_a8
S. Yu. Orevkov. On the Hyperbolicity Locus of a Real Curve. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 86-89. http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a8/

[1] J. Björklund, J. Knot Theory and Ramifications, 20:9 (2011), 1285–1309 | DOI | MR | Zbl

[2] M. Kummer, K. Shaw, Ann. de la fac. des sci. de Toulouse. Mathématiques (6) (to appear)

[3] G. Mikhalkin, S. Orevkov, arXiv: 1710.00013

[4] S. Yu. Orevkov, GAFA — Geom. Funct. Anal., 12:4 (2002), 723–755 | DOI | MR | Zbl

[5] E. Shamovich, V. Vinnikov, arXiv: 1410.2826