Probabilistic Approximation of the Evolution Operator
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 25-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for approximation of the operator $e^{-itH}$, where $H=-\frac{1}{2}\frac{d^2}{dx^2}+V(x)$, in the strong operator topology is proposed. The approximating operators have the form of expectations of functionals of a certain random point field.
Mots-clés : evolution equation, Feynman–Kac formula.
Keywords: limit theorem
@article{FAA_2018_52_2_a2,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {Probabilistic {Approximation} of the {Evolution} {Operator}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {25--39},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a2/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - Probabilistic Approximation of the Evolution Operator
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 25
EP  - 39
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a2/
LA  - ru
ID  - FAA_2018_52_2_a2
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T Probabilistic Approximation of the Evolution Operator
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 25-39
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a2/
%G ru
%F FAA_2018_52_2_a2
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. Probabilistic Approximation of the Evolution Operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 25-39. http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a2/

[1] A. D. Venttsel, Kurs teorii sluchainykh protsessov, 2-e izd., dop., Fizmatlit, M., 1996 | MR

[2] A. M. Vershik, N. V. Smorodina, “Nesingulyarnye preobrazovaniya simmetrichnykh ustoichivykh protsessov Levi”, Zap. nauchn. semin. POMI, 408 (2012), 102–114

[3] N. Danford, Dzh. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962 | MR

[4] H. Doss, “Sur une résolution stochastique de l'equation de Schrödinger à coefficients analytiques”, Commun. Math. Phys., 73:3 (1980), 247–264 | DOI | MR | Zbl

[5] J. Glimm, A. Jaffe, Quantum Physics. A Functional Integral Point of View, Springer-Verlag, New York–Heidelberg–Berlin, 1987 | MR

[6] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Ob odnoi predelnoi teoreme, svyazannoi s veroyatnostnym predstavleniem resheniya zadachi Koshi dlya uravneniya Shrëdingera”, Zap. nauchn. semin. POMI, 454 (2016), 158–176

[7] M. M. Faddeev, I. A. Ibragimov, N. V. Smorodina, “A stochastic interpretation of the Cauchy problem solution for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}{2}\frac{\partial^2 u}{\partial x^2}+V(x)u$ with complex $\sigma$”, Markov Processes Related Fields, 22:2 (2016), 203–226 | MR | Zbl

[8] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[9] Dzh. Kingman, Puassonovskie protsessy, Mir, MTsNMO, M., 2007

[10] D. Reitzner, D. Nagaj, V. Bužek, “Quantum walks”, Acta Physica Slovaca, 61:6 (2011), 603–725

[11] M. V. Platonova, “Veroyatnostnoe predstavlenie resheniya zadachi Koshi dlya evolyutsionnogo uravneniya s operatorom differentsirovaniya vysokogo poryadka”, Zap. nauchn. sem. POMI, 454 (2016), 220–237

[12] M. V. Platonova, “Veroyatnostnoe predstavlenie resheniya zadachi Koshi dlya evolyutsionnogo uravneniya s operatorom Rimana–Liuvillya”, TVP, 61:3 (2016), 417–438 | DOI | MR

[13] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Mir, M., 1978 | MR

[14] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1986 | MR

[15] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, Izd. 2-e pererab. i susch. dop., LENAND, M., 2015 | MR