Probabilistic Approximation of the Evolution Operator
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 25-39
Voir la notice de l'article provenant de la source Math-Net.Ru
A method for approximation of the operator $e^{-itH}$, where $H=-\frac{1}{2}\frac{d^2}{dx^2}+V(x)$, in the strong operator topology is proposed. The approximating operators have the form of expectations of functionals of a certain random point field.
Mots-clés :
evolution equation, Feynman–Kac formula.
Keywords: limit theorem
Keywords: limit theorem
@article{FAA_2018_52_2_a2,
author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
title = {Probabilistic {Approximation} of the {Evolution} {Operator}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {25--39},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a2/}
}
TY - JOUR AU - I. A. Ibragimov AU - N. V. Smorodina AU - M. M. Faddeev TI - Probabilistic Approximation of the Evolution Operator JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2018 SP - 25 EP - 39 VL - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a2/ LA - ru ID - FAA_2018_52_2_a2 ER -
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. Probabilistic Approximation of the Evolution Operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 2, pp. 25-39. http://geodesic.mathdoc.fr/item/FAA_2018_52_2_a2/