Essential Spectrum of Schr\"odinger Operators on Periodic Graphs
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 80-84
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a description of the essential spectra of unbounded operators $\mathcal{H}_{q}$ on $L^{2}(\Gamma)$ determined by the Schrödinger operators $-d^{2}/dx^{2}+q(x)$ on the edges of $\Gamma$ and general vertex conditions. We introduce a set of limit operators of $\mathcal{H}_{q}$ such that the essential spectrum of $\mathcal{H}_{q}$ is the union of the spectra of limit operators. We apply this result to describe the essential spectra of the operators $\mathcal{H}_{q}$ with periodic potentials perturbed by terms slowly oscillating at infinity.
Keywords:
periodic graph, Schrödinger operator on a graph, limit operator, essential spectrum.
@article{FAA_2018_52_1_a9,
author = {V. S. Rabinovich},
title = {Essential {Spectrum} of {Schr\"odinger} {Operators} on {Periodic} {Graphs}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {80--84},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a9/}
}
V. S. Rabinovich. Essential Spectrum of Schr\"odinger Operators on Periodic Graphs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 80-84. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a9/