Essential Spectrum of Schr\"odinger Operators on Periodic Graphs
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 80-84

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a description of the essential spectra of unbounded operators $\mathcal{H}_{q}$ on $L^{2}(\Gamma)$ determined by the Schrödinger operators $-d^{2}/dx^{2}+q(x)$ on the edges of $\Gamma$ and general vertex conditions. We introduce a set of limit operators of $\mathcal{H}_{q}$ such that the essential spectrum of $\mathcal{H}_{q}$ is the union of the spectra of limit operators. We apply this result to describe the essential spectra of the operators $\mathcal{H}_{q}$ with periodic potentials perturbed by terms slowly oscillating at infinity.
Keywords: periodic graph, Schrödinger operator on a graph, limit operator, essential spectrum.
@article{FAA_2018_52_1_a9,
     author = {V. S. Rabinovich},
     title = {Essential {Spectrum} of {Schr\"odinger} {Operators} on {Periodic} {Graphs}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {80--84},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a9/}
}
TY  - JOUR
AU  - V. S. Rabinovich
TI  - Essential Spectrum of Schr\"odinger Operators on Periodic Graphs
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 80
EP  - 84
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a9/
LA  - ru
ID  - FAA_2018_52_1_a9
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%T Essential Spectrum of Schr\"odinger Operators on Periodic Graphs
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 80-84
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a9/
%G ru
%F FAA_2018_52_1_a9
V. S. Rabinovich. Essential Spectrum of Schr\"odinger Operators on Periodic Graphs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 80-84. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a9/