Essential Spectrum of Schr\"odinger Operators on Periodic Graphs
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 80-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a description of the essential spectra of unbounded operators $\mathcal{H}_{q}$ on $L^{2}(\Gamma)$ determined by the Schrödinger operators $-d^{2}/dx^{2}+q(x)$ on the edges of $\Gamma$ and general vertex conditions. We introduce a set of limit operators of $\mathcal{H}_{q}$ such that the essential spectrum of $\mathcal{H}_{q}$ is the union of the spectra of limit operators. We apply this result to describe the essential spectra of the operators $\mathcal{H}_{q}$ with periodic potentials perturbed by terms slowly oscillating at infinity.
Keywords: periodic graph, Schrödinger operator on a graph, limit operator, essential spectrum.
@article{FAA_2018_52_1_a9,
     author = {V. S. Rabinovich},
     title = {Essential {Spectrum} of {Schr\"odinger} {Operators} on {Periodic} {Graphs}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {80--84},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a9/}
}
TY  - JOUR
AU  - V. S. Rabinovich
TI  - Essential Spectrum of Schr\"odinger Operators on Periodic Graphs
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 80
EP  - 84
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a9/
LA  - ru
ID  - FAA_2018_52_1_a9
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%T Essential Spectrum of Schr\"odinger Operators on Periodic Graphs
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 80-84
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a9/
%G ru
%F FAA_2018_52_1_a9
V. S. Rabinovich. Essential Spectrum of Schr\"odinger Operators on Periodic Graphs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 80-84. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a9/

[1] M. S. Agranovich, Partial Differential Equations VI, Encyclopaedia of Mathematical Sciences, 63, 1994, 1–130 | DOI

[2] G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, Mathematical Surveys and Monographs, 186, Amer. Math. Soc., Providence, RI, 2013 | MR | Zbl

[3] E. Korotyaev, I. Lobanov, Ann. Henri Puancaré, 8:6 (2007), 1151–1176 | DOI | MR | Zbl

[4] E. Korotyaev, N. Saburova, arXiv: 1507.06441

[5] P. Kuchment, Waves in Random Media, 14:1 (2004), 107–128 | MR

[6] P. Kuchment, J. Phys. A: Math. Gen., 38:22 (2005), 4887–4900 | DOI | MR | Zbl

[7] P. Kuchment, O. Post, Comm. Math. Phys., 275:3 (2007), 805–826 | DOI | MR | Zbl

[8] M. Lindner, M. Seidel, J. Funct. Anal., 267:3 (2014), 901–917 | DOI | MR | Zbl

[9] V. S. Rabinovich, S. Roch, B. Silbermann, Limit Operators and its Applications in Operator Theory, Operator Theory: Advances and Applications, 150, Birkhäuser, Basel, 2004 | MR

[10] V. S. Rabinovich, Russ. J. Math. Phys., 12:1 (2005), 62–80 | MR | Zbl

[11] V. S. Rabinovich, S. Roch, J. Phys. A, Math. Theor., 39:26 (2006), 8377–8394 | MR | Zbl

[12] V. S. Rabinovich, S. Roch, J. Phys. A, Math. Theor., 40:33 (2007), 10109–10128 | DOI | MR | Zbl