Restricted Lie (Super)Algebras in Characteristic 3
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 61-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give explicit formulas proving that the following Lie (super)algebras are restricted: known exceptional simple vectorial Lie (super)algebras in characteristic 3, deformed Lie (super)algebras with indecomposable Cartan matrix, simple subquotients over an algebraically closed field of characteristic 3 of these (super)algebras (under certain conditions), and deformed divergence-free Lie superalgebras of a certain type with any finite number of indeterminates in any characteristic.
Keywords: restricted Lie algebra, characteristic 3, Lie superalgebra.
@article{FAA_2018_52_1_a5,
     author = {S. Bouarroudj and A. O. Krutov and A. V. Lebedev and D. A. Leites and I. M. Shchepochkina},
     title = {Restricted {Lie} {(Super)Algebras} in {Characteristic} 3},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {61--64},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a5/}
}
TY  - JOUR
AU  - S. Bouarroudj
AU  - A. O. Krutov
AU  - A. V. Lebedev
AU  - D. A. Leites
AU  - I. M. Shchepochkina
TI  - Restricted Lie (Super)Algebras in Characteristic 3
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 61
EP  - 64
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a5/
LA  - ru
ID  - FAA_2018_52_1_a5
ER  - 
%0 Journal Article
%A S. Bouarroudj
%A A. O. Krutov
%A A. V. Lebedev
%A D. A. Leites
%A I. M. Shchepochkina
%T Restricted Lie (Super)Algebras in Characteristic 3
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 61-64
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a5/
%G ru
%F FAA_2018_52_1_a5
S. Bouarroudj; A. O. Krutov; A. V. Lebedev; D. A. Leites; I. M. Shchepochkina. Restricted Lie (Super)Algebras in Characteristic 3. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 61-64. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a5/

[1] R. E. Block, R. L. Wilson, J. Algebra, 114:1 (1988), 115–259 | DOI | MR | Zbl

[2] S. Bouarroudj, P. Grozman, A. Lebedev, D. Leites, I. Shchepochkina, International Math. Res. Not., 18 (2016), 5695–5726, arXiv: 1307.1551 | DOI | MR | Zbl

[3] S. Bouarroudj, P. Grozman, A. Lebedev, D. Leites, I. Shchepochkina, arXiv: 1510.07255

[4] S. Buarrudzh, P. Ya. Grozman, D. A. Leites, Funkts. analiz i pril., 42:3 (2008), 1–9, arXiv: 0704.0130 | DOI | MR

[5] S. Bouarroudj, P. Grozman, D. Leites, Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 5 (2009), 060, arXiv: 0710.5149 | MR | Zbl

[6] S. Bouarroudj, P. Grozman, D. Leites, arXiv: 0807.3054

[7] S. Buarrudzh, A. Lebedev, F. Vagemann, Matem. zametki, 89:6 (2011), 808–824, arXiv: 0909.3572 | DOI | MR

[8] S. Bouarroudj, A. Lebedev, D. Leites, I. Shchepochkina, arXiv: 1407.1695

[9] J. Math. Sci. (N. Y.), 141:4 (2007), 1390–98, arXiv: math/0606682 | DOI | MR | Zbl

[10] P. Grozman http://www.equaonline.com/math/SuperLie

[11] P. Grozman, D. Leites, Lett. Math. Phys., 74:3 (2005), 229–262, arXiv: math/0509400 | DOI | MR | Zbl

[12] V. G. Kats, Izv. AN SSSR, ser. matem., 38:4 (1974), 800–834 | MR

[13] A. I. Kostrikin, Izv. AN SSSR, ser. matem., 34:4 (1970), 744–756

[14] A. Lebedev, D. Leites (with an appendix by P. Deligne), J. Prime Research in Math., 2:1 (2006), 1–13 | MR

[15] I. M. Schepochkina, TMF, 147:3 (2006), 450–469, arXiv: math/0509472 | DOI | MR

[16] H. Strade, Simple Lie algebras over fields of positive characteristic, v. I, de Gruyter Expositions in Mathematics, 38, Structure theory, Walter de Gruyter Co., Berlin, 2004 | DOI | MR