On the P\'olya--Sz\'eg\"o Inequality for Functionals with Variable Exponent
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 56-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analogues of the Pólya–Szégö inequality with variable exponent in the integrand are considered. Necessary and sufficient conditions for the fulfillment of these inequalities are obtained.
Keywords: symmetrization, variable exponent, Pólya–Szégö inequality.
@article{FAA_2018_52_1_a4,
     author = {S. V. Bankevich},
     title = {On the {P\'olya--Sz\'eg\"o} {Inequality} for {Functionals} with {Variable} {Exponent}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {56--60},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a4/}
}
TY  - JOUR
AU  - S. V. Bankevich
TI  - On the P\'olya--Sz\'eg\"o Inequality for Functionals with Variable Exponent
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 56
EP  - 60
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a4/
LA  - ru
ID  - FAA_2018_52_1_a4
ER  - 
%0 Journal Article
%A S. V. Bankevich
%T On the P\'olya--Sz\'eg\"o Inequality for Functionals with Variable Exponent
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 56-60
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a4/
%G ru
%F FAA_2018_52_1_a4
S. V. Bankevich. On the P\'olya--Sz\'eg\"o Inequality for Functionals with Variable Exponent. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 56-60. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a4/

[1] G. Talenti, Milan J. Math., 84:1 (2016), 105–157 | DOI | MR | Zbl

[2] F. Brock, Calc. Var. Partial Differential Equations, 8:1 (1999), 15–25 | DOI | MR | Zbl

[3] S. V. Bankevich, A. I. Nazarov, Calc. Var. Partial Differential Equations, 53:3–4 (2015), 627–647 | DOI | MR | Zbl

[4] S. V. Bankevich, A. I. Nazarov, Dokl. RAN, 438:1 (2011), 11–13 | MR | Zbl

[5] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., 2017, Springer-Verlag, Berlin, 2011 | DOI | MR | Zbl

[6] V. V. Zhikov, O variatsionnykh zadachakh i nelineinykh ellipticheskikh uravneniyakh s nestandartnymi usloviyami rosta, T. Rozhkovskaya, Novosibirsk, 2017

[7] I. I. Sharapudinov, Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, Itogi nauki. Yug Rossii. Matematicheskaya monografiya. Vyp. 5, YuMI VNTs i RSO-A, Vladikavkaz, 2012

[8] Dzh. Buttatstso, M. Dzhakvinta, S. Gildebrandt, Odnomernye variatsionnye zadachi. Vvedenie, Nauchnaya kniga, Novosibirsk, 2002