@article{FAA_2018_52_1_a4,
author = {S. V. Bankevich},
title = {On the {P\'olya{\textendash}Sz\'eg\"o} {Inequality} for {Functionals} with {Variable} {Exponent}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {56--60},
year = {2018},
volume = {52},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a4/}
}
S. V. Bankevich. On the Pólya–Szégö Inequality for Functionals with Variable Exponent. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 56-60. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a4/
[1] G. Talenti, Milan J. Math., 84:1 (2016), 105–157 | DOI | MR | Zbl
[2] F. Brock, Calc. Var. Partial Differential Equations, 8:1 (1999), 15–25 | DOI | MR | Zbl
[3] S. V. Bankevich, A. I. Nazarov, Calc. Var. Partial Differential Equations, 53:3–4 (2015), 627–647 | DOI | MR | Zbl
[4] S. V. Bankevich, A. I. Nazarov, Dokl. RAN, 438:1 (2011), 11–13 | MR | Zbl
[5] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., 2017, Springer-Verlag, Berlin, 2011 | DOI | MR | Zbl
[6] V. V. Zhikov, O variatsionnykh zadachakh i nelineinykh ellipticheskikh uravneniyakh s nestandartnymi usloviyami rosta, T. Rozhkovskaya, Novosibirsk, 2017
[7] I. I. Sharapudinov, Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, Itogi nauki. Yug Rossii. Matematicheskaya monografiya. Vyp. 5, YuMI VNTs i RSO-A, Vladikavkaz, 2012
[8] Dzh. Buttatstso, M. Dzhakvinta, S. Gildebrandt, Odnomernye variatsionnye zadachi. Vvedenie, Nauchnaya kniga, Novosibirsk, 2002