On the Pólya–Szégö Inequality for Functionals with Variable Exponent
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 56-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Analogues of the Pólya–Szégö inequality with variable exponent in the integrand are considered. Necessary and sufficient conditions for the fulfillment of these inequalities are obtained.
Keywords: symmetrization, variable exponent, Pólya–Szégö inequality.
@article{FAA_2018_52_1_a4,
     author = {S. V. Bankevich},
     title = {On the {P\'olya{\textendash}Sz\'eg\"o} {Inequality} for {Functionals} with {Variable} {Exponent}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {56--60},
     year = {2018},
     volume = {52},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a4/}
}
TY  - JOUR
AU  - S. V. Bankevich
TI  - On the Pólya–Szégö Inequality for Functionals with Variable Exponent
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 56
EP  - 60
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a4/
LA  - ru
ID  - FAA_2018_52_1_a4
ER  - 
%0 Journal Article
%A S. V. Bankevich
%T On the Pólya–Szégö Inequality for Functionals with Variable Exponent
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 56-60
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a4/
%G ru
%F FAA_2018_52_1_a4
S. V. Bankevich. On the Pólya–Szégö Inequality for Functionals with Variable Exponent. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 56-60. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a4/

[1] G. Talenti, Milan J. Math., 84:1 (2016), 105–157 | DOI | MR | Zbl

[2] F. Brock, Calc. Var. Partial Differential Equations, 8:1 (1999), 15–25 | DOI | MR | Zbl

[3] S. V. Bankevich, A. I. Nazarov, Calc. Var. Partial Differential Equations, 53:3–4 (2015), 627–647 | DOI | MR | Zbl

[4] S. V. Bankevich, A. I. Nazarov, Dokl. RAN, 438:1 (2011), 11–13 | MR | Zbl

[5] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., 2017, Springer-Verlag, Berlin, 2011 | DOI | MR | Zbl

[6] V. V. Zhikov, O variatsionnykh zadachakh i nelineinykh ellipticheskikh uravneniyakh s nestandartnymi usloviyami rosta, T. Rozhkovskaya, Novosibirsk, 2017

[7] I. I. Sharapudinov, Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, Itogi nauki. Yug Rossii. Matematicheskaya monografiya. Vyp. 5, YuMI VNTs i RSO-A, Vladikavkaz, 2012

[8] Dzh. Buttatstso, M. Dzhakvinta, S. Gildebrandt, Odnomernye variatsionnye zadachi. Vvedenie, Nauchnaya kniga, Novosibirsk, 2002