On the Distribution of Zero Sets of Holomorphic Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 26-42
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $M$ be a subharmonic function with Riesz measure $\nu_M$ in a domain $D$ in the $n$-dimensional complex Euclidean space $\mathbb C^n$, and let $f$ be a nonzero function that is holomorphic in $D$, vanishes on a set ${\mathsf Z}\subset D$, and satisfies $|f|\le \exp M$ on $D$. Then restrictions on the growth of $\nu_M$ near the boundary of $D$ imply certain restrictions on the dimensions or the area/volume of $\mathsf Z$. We give a quantitative study of this phenomenon in the subharmonic framework.
Keywords:
holomorphic function, zero set, subharmonic function, Riesz measure, Jensen measure.
@article{FAA_2018_52_1_a2,
author = {B. N. Khabibullin and A. P. Rozit},
title = {On the {Distribution} of {Zero} {Sets} of {Holomorphic} {Functions}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {26--42},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a2/}
}
TY - JOUR AU - B. N. Khabibullin AU - A. P. Rozit TI - On the Distribution of Zero Sets of Holomorphic Functions JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2018 SP - 26 EP - 42 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a2/ LA - ru ID - FAA_2018_52_1_a2 ER -
B. N. Khabibullin; A. P. Rozit. On the Distribution of Zero Sets of Holomorphic Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 26-42. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a2/