On the Distribution of Zero Sets of Holomorphic Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 26-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a subharmonic function with Riesz measure $\nu_M$ in a domain $D$ in the $n$-dimensional complex Euclidean space $\mathbb C^n$, and let $f$ be a nonzero function that is holomorphic in $D$, vanishes on a set ${\mathsf Z}\subset D$, and satisfies $|f|\le \exp M$ on $D$. Then restrictions on the growth of $\nu_M$ near the boundary of $D$ imply certain restrictions on the dimensions or the area/volume of $\mathsf Z$. We give a quantitative study of this phenomenon in the subharmonic framework.
Keywords: holomorphic function, zero set, subharmonic function, Riesz measure, Jensen measure.
@article{FAA_2018_52_1_a2,
     author = {B. N. Khabibullin and A. P. Rozit},
     title = {On the {Distribution} of {Zero} {Sets} of {Holomorphic} {Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {26--42},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a2/}
}
TY  - JOUR
AU  - B. N. Khabibullin
AU  - A. P. Rozit
TI  - On the Distribution of Zero Sets of Holomorphic Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 26
EP  - 42
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a2/
LA  - ru
ID  - FAA_2018_52_1_a2
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%A A. P. Rozit
%T On the Distribution of Zero Sets of Holomorphic Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 26-42
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a2/
%G ru
%F FAA_2018_52_1_a2
B. N. Khabibullin; A. P. Rozit. On the Distribution of Zero Sets of Holomorphic Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 26-42. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a2/

[1] F. Griffits, Dzh. King, Teoriya Nevanlinny i golomorfnye otobrazheniya algebraicheskikh mnogoobrazii, Matematika. Novoe v zarubezhnoi nauke, 1, Mir, M., 1976 | MR

[2] Sh. A. Dautov, G. M. Khenkin, “Nuli golomorfnykh funktsii konechnogo poryadka i vesovye otsenki reshenii $\bar\partial$-uravnenii”, Matem. sb., 107(149):2(10) (1978), 163–174 | MR | Zbl

[3] J. Bruna and X. Massaneda, “Zero sets of holomorphic functions in the unit ball with slow growth”, J. Anal. Math., 66 (1995), 217–252 | DOI | MR | Zbl

[4] B. N. Khabibullin, “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. II”, Izv. RAN, ser. matem., 65:5 (2001), 167–190 | DOI | MR | Zbl

[5] G. M. Khenkin, “Metod integralnykh predstavlenii v kompleksnom analize”, Kompleksnyi analiz — mnogie peremennye — 1, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 7, VINITI, M., 1985, 23–124 | MR

[6] S. V. Shvedenko, “Klassy Khardi i svyazannye s nimi prostranstva analiticheskikh funktsii v edinichnom kruge, polikruge i share”, Itogi nauki i tekhniki. Matematicheskii analiz, 23, VINITI, M., 1985, 3–124 | MR

[7] L. I. Ronkin, Elementy teorii analiticheskikh funktsii mnogikh peremennykh, Naukova dumka, Kiev, 1977 | MR

[8] L. I. Ronkin, “Tselye funktsii”, Kompleksnyi analiz — mnogie peremennye, v. 3, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 9, VINITI, M., 1986, 5–36

[9] P. Lelon, L. Gruman, Tselye funktsii mnogikh peremennykh, Mir, M., 1989 | MR

[10] L. I. Ronkin, Functions of Completely Regular Growth, Mathematics and Its Applications (Soviet Series), Kluver Academic Publishers Group, Dordrecht–Boston–London, 1992 | MR | Zbl

[11] B. N. Khabibullin, “Polnota sistem tselykh funktsii v prostranstvakh golomorfnykh funktsii”, Matem. zametki, 66:4 (1999), 603–616 | DOI | MR | Zbl

[12] B. N. Khabibullin, Polnota sistem eksponent i mnozhestva edinstvennosti, izdanie chetvertoe dopolnennoe, RITs BashGU, Ufa, 2012

[13] S. Yu. Favorov, L. D. Radchenko, “Mera Rissa funktsii, subgarmonicheskikh vo vneshnosti kompakta”, Matematichni Studii, 40:2 (2013), 149–158 | MR

[14] B. N. Khabibullin, N. R. Tamindarova, “Raspredelenie nulei i mass golomorfnykh i subgarmonicheskikh funktsii. I, II. Usloviya tipa Adamara i Blyashke”, Mat. sb., 2018, arXiv: 1512.04610v2

[15] B. Khabibullin, N. Tamindarova, “Distribution of zeros for holomorphic functions: Hadamard- and Blaschke-type conditions”, Abstracts of International Workshop on “Non-harmonic Analysis and Differential Operators” (May 25-27, 2016), Institute of Mathematics and Mechanics of Azerbaijan National Academy of Sciences, Azerbaijan, Baku, 2016, 63

[16] B. Khabibullin, N. Tamindarova, “Uniqueness theorems for subharmonic and holomorphic functions of several variables on a domain”, Azerb. J. Math., 7:1 (2017), 70–79 | MR

[17] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics, 199, Springer-Verlag, New York, 2000 | DOI | MR | Zbl

[18] E. G. Kudasheva, B. N. Khabibullin, “Raspredelenie nulei golomorfnykh funktsii umerennogo rosta v edinichnom kruge i predstavlenie v nem meromorfnykh funktsii”, Matem. sb., 200:9 (2009), 95–126 | DOI | MR | Zbl

[19] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, Mir, M., 1980 | MR

[20] Th. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[21] E. M. Chirka, Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR

[22] M. Klimek, Pluripotential Theory, Clarendon Press, Oxford University Press, New York, 1991 | MR | Zbl

[23] P. Lelong, “Propriétés métriques des variétés analytiques complexes définies par une équation”, Ann. Sci. Ecole Norm. Sup., 67 (1950), 393–419 | DOI | MR | Zbl

[24] M. G. Arsove, “Functions representable as differences of subharmonic functions”, Trans. Amer. Math. Soc., 75 (1953), 327–365 | DOI | MR | Zbl

[25] A. F. Grishin, Nguen Van Kuin, I. V. Poedintseva, “Teoremy o predstavlenii $\delta$-subgarmonicheskikh funktsii”, Bisnik Kharkiv. nats. universitetu im. V. N. Karazina. Cepiya «Matematika, prikladna matematika i mekhanika», 1133 (2014), 56–75 http://vestnik-math.univer.kharkov.ua/Vestnik-KhNU-1133-2014-grish.pdf | Zbl

[26] B. J. Cole, T. J. Ransford, “Subharmonicity without upper semicontinuity”, J. Func. Anal., 147 (1997), 420–442 | DOI | MR | Zbl

[27] B. N. Khabibullin, “Kriterii (sub-)garmonichnosti i prodolzhenie (sub-)garmonicheskikh funktsii”, Sib. matem. zhurn., 44:4 (2003), 905–925 | MR | Zbl

[28] B. N. Khabibullin, N. R. Tamindarova, “Subharmonic test functions and the distribution of zero sets of holomorphic functions”, Lobachevskii J. Math., 38:1 (2016), 38–43, arXiv: 1606.06714v1 | DOI | MR

[29] E. A. Poletsky, “Disk envelopes of functions II”, J. Funct. Anal., 163:1 (1999), 111–132 | DOI | MR | Zbl