Dichotomy of Iterated Means for Nonlinear Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 89-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss a dichotomy of iterated means of nonlinear operators acting on a compact convex subset of a finite-dimensional real Banach space. As an application, we study the mean ergodicity of nonhomogeneous Markov chains.
Keywords: mean ergodicity, iterated means, nonhomogeneous Markov chain.
@article{FAA_2018_52_1_a11,
     author = {M. Saburov},
     title = {Dichotomy of {Iterated} {Means} for {Nonlinear} {Operators}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {89--91},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a11/}
}
TY  - JOUR
AU  - M. Saburov
TI  - Dichotomy of Iterated Means for Nonlinear Operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 89
EP  - 91
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a11/
LA  - ru
ID  - FAA_2018_52_1_a11
ER  - 
%0 Journal Article
%A M. Saburov
%T Dichotomy of Iterated Means for Nonlinear Operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 89-91
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a11/
%G ru
%F FAA_2018_52_1_a11
M. Saburov. Dichotomy of Iterated Means for Nonlinear Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 89-91. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a11/

[1] T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Springer, Cham, 2015 | MR | Zbl

[2] J.-B. Baillon, C. R. Acad. Sci. Paris, Sér. A-B, 280:22 (1975), 1511–1514 | MR | Zbl

[3] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York–London, 1960 | MR | Zbl

[4] V. N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, Cambridge University Press, Cambridge, 2010 | MR | Zbl

[5] M. Saburov, Nonlinear Anal., Theory Methods Appl., 143 (2016), 105–119 | DOI | MR | Zbl

[6] M. I. Zakharevich, UMN, 33:6 (1978), 207–208 | MR | Zbl

[7] M. Saburov, Ann. Fun. Anal., 6:4 (2015), 247–254 | DOI | MR | Zbl

[8] G. H. Hardy, Proc. London Math. Soc. (s2), 8 (1910), 301–320 | DOI | MR | Zbl

[9] G. H. Hardy, Divergent Series, Amer. Math. Soc. Chelsea Publishing, Providence, RI, 2000