Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2018_52_1_a11, author = {M. Saburov}, title = {Dichotomy of {Iterated} {Means} for {Nonlinear} {Operators}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {89--91}, publisher = {mathdoc}, volume = {52}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a11/} }
M. Saburov. Dichotomy of Iterated Means for Nonlinear Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 89-91. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a11/
[1] T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Springer, Cham, 2015 | MR | Zbl
[2] J.-B. Baillon, C. R. Acad. Sci. Paris, Sér. A-B, 280:22 (1975), 1511–1514 | MR | Zbl
[3] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York–London, 1960 | MR | Zbl
[4] V. N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations, Cambridge University Press, Cambridge, 2010 | MR | Zbl
[5] M. Saburov, Nonlinear Anal., Theory Methods Appl., 143 (2016), 105–119 | DOI | MR | Zbl
[6] M. I. Zakharevich, UMN, 33:6 (1978), 207–208 | MR | Zbl
[7] M. Saburov, Ann. Fun. Anal., 6:4 (2015), 247–254 | DOI | MR | Zbl
[8] G. H. Hardy, Proc. London Math. Soc. (s2), 8 (1910), 301–320 | DOI | MR | Zbl
[9] G. H. Hardy, Divergent Series, Amer. Math. Soc. Chelsea Publishing, Providence, RI, 2000