Results on the Colombeau Products of the Distribution $x_+^{-r-1/2}$ with the Distributions $x_-^{-k-1/2}$ and $x_-^{k-1/2}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 13-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Results on the products of the distribution $x_+^{-r-1/2}$ with the distributions $x_-^{-k-1/2}$ and $x_-^{k-1/2}$ are obtained in the differential algebra ${\mathcal{G}}(\mathbb{R})$ of Colombeau generalized functions, which contains the space $\mathcal{D}'(\mathbb{R})$ of Schwartz distributions as a subspace; in this algebra the notion of association is defined, which is a faithful generalization of weak equality in $\mathcal{G}(\mathbb{R})$. This enables treating the results in terms of distributions again.
Mots-clés : distribution, Colombeau algebra, multiplication of distributions.
Keywords: Colombeau generalized functions
@article{FAA_2018_52_1_a1,
     author = {M. Miteva and B. Jolevska-Tuneska and T. Atanasova-Pacemska},
     title = {Results on the {Colombeau} {Products} of the {Distribution} $x_+^{-r-1/2}$ with the {Distributions} $x_-^{-k-1/2}$ and $x_-^{k-1/2}$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {13--25},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a1/}
}
TY  - JOUR
AU  - M. Miteva
AU  - B. Jolevska-Tuneska
AU  - T. Atanasova-Pacemska
TI  - Results on the Colombeau Products of the Distribution $x_+^{-r-1/2}$ with the Distributions $x_-^{-k-1/2}$ and $x_-^{k-1/2}$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2018
SP  - 13
EP  - 25
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a1/
LA  - ru
ID  - FAA_2018_52_1_a1
ER  - 
%0 Journal Article
%A M. Miteva
%A B. Jolevska-Tuneska
%A T. Atanasova-Pacemska
%T Results on the Colombeau Products of the Distribution $x_+^{-r-1/2}$ with the Distributions $x_-^{-k-1/2}$ and $x_-^{k-1/2}$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2018
%P 13-25
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a1/
%G ru
%F FAA_2018_52_1_a1
M. Miteva; B. Jolevska-Tuneska; T. Atanasova-Pacemska. Results on the Colombeau Products of the Distribution $x_+^{-r-1/2}$ with the Distributions $x_-^{-k-1/2}$ and $x_-^{k-1/2}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 52 (2018) no. 1, pp. 13-25. http://geodesic.mathdoc.fr/item/FAA_2018_52_1_a1/

[1] F. Farassat, “Introduction to generalized functions with applications in aerodynamics and aeroacoustics”, NASA Technical, 3428

[2] P. Antosik, J. Mikusinski, R. Sikorski, Theory of Distributions. The sequential approach, Elsevier Scientific Publishing Company, Amsterdam; PWN—Polish Scientific Publishers, Warszawa, 1973 | MR | Zbl

[3] B. Fisher, “The product of the distributions”, Quart. J. Math. Oxford, 22 (1971), 291–298 | DOI | MR | Zbl

[4] B. Fisher, “Om defining the product of distributions”, Math. Nachr., 99:1 (1980), 239–249 | DOI | MR | Zbl

[5] L. Z. Cheng, B. Fisher, “Several products of distributions on $\mathbb{R}^m$”, Proc. Roy. Soc. London, A, 426:1871 (1989), 425–439 | DOI | MR | Zbl

[6] M. Oberguggenberger, T. Todorov, “An embedding of Schwartz distributions in the algebra of asymptotic functions”, Internat. J. Math. Math. Sci., 21:3 (1998), 417–428 | DOI | MR | Zbl

[7] J.-F. Colombeau, New Generalized Functions and Multiplication of Distribution, North Holland Math. Studies, 84, North-Holland, Amsterdam, 1984 | MR

[8] J.-F. Colombeau, Elementary Introduction to New Generalized Functions, North Holland Math. Studies, 113, North-Holland, Amsterdam, 1985 | MR | Zbl

[9] B. Jolevska-Tuneska, A. Takaci, E. Ozcag, “On differential equations with non-standard coefficients”, Applicable Analysis and Discrete Mathematics, 1 (2007), 276–283 | DOI | MR | Zbl

[10] B. Damyanov, “Results on Colombeau product of distributions”, Comment. Math. Univ. Carolin., 38:4 (1997), 627–634 | MR | Zbl

[11] B. Damyanov, “Balanced Colombeau products of the distributions $x_\pm^{-p}$ and $x^{-p}$”, Czechoslovak Math. J., 55:1 (2005), 189–201 | DOI | MR | Zbl

[12] B. Damyanov, “Results on balanced products of the distributions $x_\pm^a$ in Colombeau algebra $\mathcal{G}(\mathbb{R})$”, Integral Transforms Spec. Funct., 17:9 (2006), 623–635 | DOI | MR | Zbl

[13] M. Miteva, B. Jolevska-Tuneska, “Some results on Colombeau product of distributions”, Adv. Math. Sci. J., 1:2 (2012), 121–126 | MR

[14] B. Jolevska-Tuneska, T. Atanasova-Pacemska, “Further results on Colombeau product of distributions”, Int. J. Math. Math. Sci., 2013, 918905 | DOI | MR | Zbl

[15] M. Miteva, B. Jolevska-Tuneska, T. Atanasova-Pacemska, “On products of distributions in Colombeau algebra”, Math. Probl. Eng., 2014, 910510 | DOI | MR | Zbl

[16] M. Miteva, B. Jolevska-Tuneska, T. Atanasova-Pacemska, “Colombeau Products of Distributions”, Springerplus, 5 (2016), 2042 | DOI

[17] A. B. Antonevich, O. N. Pyzhkova, A. G. Tretyakova, “Asimptoticheskie dlya proizvedenii bazisov skreschennykh funktsii”, Trudy Inst. matem. Nats. akad. nauk Belorussii, 5 (2000), 18–31 | Zbl

[18] J. Aragona, J.-F. Colombeau, S. O. Juriaans, “Nonlinear generalized functions and jump conditions for a standard one pressure liquid-gas model”, J. Math. Anal. Appl., 418:2 (2014), 964–977 | DOI | MR | Zbl

[19] A. Gsponer, “A concise introduction to Colombeau generalized functions and their applications in classical electrodynamics”, Europ. J. Phys., 30:1 (2009), 109–126 | DOI | MR | Zbl

[20] K. Ohkitani, M. Dowker, “Burges equation with a passive scalar: dissipation anomaly and Colombeau calculus”, J. Math. Phys., 51:3 (2010), 033101 | DOI | MR | Zbl

[21] V. Prusa, K. R. Rajagopal, “On the response of physical systems governed by non-linear ordinary differential equations to step input”, Intern. J. Non-Linear Mech., 81 (2016), 207–221 | DOI

[22] R. Steinbauer, J. A. Vickers, “The use of generalized functions and distributions in general relativity”, Classical Quantum Gravity, 23:10 (2006) | DOI | MR | Zbl