Conditions for invertibility and Hurwitz stability
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 84-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a generalization of Fiedler's theorem, a block condition for the invertibility of an operator and an estimate for the operator matrix of the inverse operator are presented. A block condition for an operator to be Hurwitz is also given, which contains an estimate of the spectral abscissa of the operator.
Keywords: Banach space, bounded linear operator, Lozinskii logarithmic norm, invertible operators and the block invertibility condition (Fiedler's theorem), Hurwitz operators and a block condition for Hurwitz stability.
Mots-clés : spectral abscissa
@article{FAA_2017_51_4_a8,
     author = {A. I. Perov},
     title = {Conditions for invertibility and {Hurwitz} stability},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {84--89},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a8/}
}
TY  - JOUR
AU  - A. I. Perov
TI  - Conditions for invertibility and Hurwitz stability
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 84
EP  - 89
VL  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a8/
LA  - ru
ID  - FAA_2017_51_4_a8
ER  - 
%0 Journal Article
%A A. I. Perov
%T Conditions for invertibility and Hurwitz stability
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 84-89
%V 51
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a8/
%G ru
%F FAA_2017_51_4_a8
A. I. Perov. Conditions for invertibility and Hurwitz stability. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 84-89. http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a8/

[1] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR

[2] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR

[3] B. A. Sevastyanov, UMN, 6:6 (1951), 47–99 | MR | Zbl

[4] M. Kamenskii, P. Nistri, Set-Valued Analysis, 11:4 (2003), 345–357 | DOI | MR | Zbl

[5] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR

[6] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemytskii, Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966 | MR

[7] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[8] E. Bekkenbakh, R. Bellman, Neravenstva, Mir, M., 1965 | MR