On real solutions of systems of equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 79-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Systems of equations $f_1=\cdots=f_{n-1}=0$ в $\mathbb R^n=\{x\}$ in $\mathbb R^n=\{x\}$ having the solution $x=0$ are considered under the assumption that the quasi-homogeneous truncations of the smooth functions $f_1=\cdots=f_{n-1}$ are independent at $x\ne0$. It is shown that, for $n\ne2$ and $n\ne4$, such a system has a smooth solution which passes through $x=0$ and has nonzero Maclaurin series.
Keywords: quasi-homogeneous truncation, asymptotic solution.
@article{FAA_2017_51_4_a7,
     author = {V. V. Kozlov},
     title = {On real solutions of systems of equations},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {79--83},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a7/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - On real solutions of systems of equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2017
SP  - 79
EP  - 83
VL  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a7/
LA  - ru
ID  - FAA_2017_51_4_a7
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T On real solutions of systems of equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2017
%P 79-83
%V 51
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a7/
%G ru
%F FAA_2017_51_4_a7
V. V. Kozlov. On real solutions of systems of equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 51 (2017) no. 4, pp. 79-83. http://geodesic.mathdoc.fr/item/FAA_2017_51_4_a7/

[1] A. D. Bryuno, Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Nauka–Fizmatlit, M., 1998 | MR

[2] A. G. Khovanskii, Malochleny, Fazis, M., 1997 | MR

[3] Sh.-Zh. de la Valle-Pussen, Kurs analiza beskonechno malykh, v. 2, GTTI, L.-M., 1933

[4] V. Volterra, Acta Math., 22:1 (1899), 201–357 | DOI | MR

[5] V. V. Kozlov, S. D. Furta, Asimptotika reshenii silno nelineinykh sistem differentsialnykh uravnenii, NITs «Regulyarnaya i khaoticheskaya dinamika», Moskva-Izhevsk, 2009 | MR

[6] H. Yoshida, Celestial Mech., 31:4 (1983), 363–379 ; 381–399 | DOI | MR | Zbl | Zbl

[7] A. N. Kuznetsov, Funkts. analiz i ego pril., 6:2 (1972), 41–51 | MR | Zbl